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It is shown that the image of a stratifiable space under
a pseudo-open compact mapping is semi-stratifiable. By
strengthening the mapping from compact to finite-to-one the
following results are also obtained. The image of a semi-
stratifiable (semi-metric) space under an open finite-to-one
mapping is semi-stratifiable (semi-metric).

Notation and terminology will follow that of Dugundji [6]. By
a neighborhood of a set A, we will mean an open set containing A,
and all mappings will be continuous and surjective.

DEFINITION 1.1. A topological space X is a stratifiable space if,
to each open set U c X, one can assign a sequence {Un}n=1 of open
subsets of X such that

( a ) UncU,
(b) U^Un=U,

( c) Un a Vn whenever U c V.

DEFINITION 1.2. A topological space X is a semi-stratifiable
space if, to each open set U c X, one can assign a sequence {Un}n=ι
of closed subsets of X such that

( a ) UΓ=1Un=U,
( b) Un c Vn whenever U c V.

Ceder [3] introduced Λf3-spaces and Borges [2] renamed them
"stratifiable", while Creede [4] studied semi-stratifiable spaces. A
correspondence U—*{Un}n=i is a stratification (semi-stratification) for
the space X whenever it satisfies the conditions of Definition 1.1 (1.2).

LEMMA 1.3. A space X is stratifiable if and only if to each
closed subset F a X one can assign a sequence {Un} of open subsets of
X such that

( a ) F c Un for each n,
(b) n^U% = F,
( c ) Un a Vn whenever U c V.

LEMMA 1.4. A space X is semi-stratifiable if and only if to
each closed set F c X one can assign a sequence {Un} of open subsets
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of X such that
(a) F aUn for each n,
(b) nτ=1un = F
( c ) Un c Vn whenever U c V.

A correspondence F—+{Un}n=i is a dwzZ stratification (semi-strati-
fication) for the space X whenever it satisfies the three conditions of
Lemma 1.3 (1.4). For convenience in the proofs which will be
encountered, each member in the range of a correspondence will also
be called a dual stratification (semi-stratification) of the closed set to
which it is associated.

2* Mappings from stratiίiable spaces* We now exhibit a natural
way in which semi-stratifiable spaces may arise.

DEFINITION 2.1. A mapping f:X—+Y is pseudo-open if for each
ye Y and any neighborhood U of f~ι{y), it follows that ye int [/(£/)].

DEFINITION 2.2. A mapping f:X~* Y" is compact if f~ι{y) is
compact for each yeY.

THEOREM 2.3. If X is stratifiable and f:X—>Yisa pseudo-open
compact mapping, then Y is semi-stratifiable.

Proof. Let F c Y be a closed set. Then f~\F) is closed in X
and, hence, by Lemma 1.3, has a dual stratification {Un}. We will
show that the correspondence F —> {int[/(E7»)]} is a dual semi-stratifica-
tion for Y by proving that the collections {int[/(ί7n)]} satisfy the
requirements of Lemma 1.4.

Part (c) of Lemma 1.4 is easily shown to be satisfied. For if F
and G are closed subsets of Y such that F c G , then f~\F) c /^(G),
and denoting the dual stratifications of f~\F) and f~ι{G) by {Un) and
{Vn}, respectively, we must have by Lemma 1.3(c) that Un c Vn for
each n. Therefore, int[f(Un)] c int[f(Vn)].

With regard to part (a), it follows that F c int[f(Un)] for each
n. This is because each Un is a neighborhood of f~~\y) for every
yeF, and therefore y e mt[f(Un)] for every yeF bγ hypothesis of /
being a pseudo-open mapping.

All that remains to be shown is that ΠΓ=i int[f(Un)] — F, and
this will verify (b). From the preceding paragraph we know that
F c n~=i int[f(Un)]o To get inclusion in the reverse direction, assume
ze ΠΓ=i int[/(ϊ7Λ)]. Then z e int[/( Un)] for every n; hence, there
exist points xn e Un such that f(xn) = z. Since / is a compact mapping,
the sequence {xn} has an accumulation point x. Therefore, given any
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neighborhood V of x, there exist infinitely many integers n{ such
that xn. e V. Thus, V has a nonempty intersection with infinitely
many Un, and since we may assume that the collection {Un} is
descending, this implies that VΓ\ Un Φ φ for every n. That is,
xeΠn=iUn. But {UJ was a dual stratification for f~\F) which
implies that Π ?=i Un = /" '(F). Thus, a? e / ^ ( F ) and f(x) e F.

Furthermore, f(x) = JS because #e {5£} and {άQ c /"^(s) = f~\z)
Hence, ^ e ί 7 and the proof is complete.

COROLLARY 2.4. If X is a stratifiable space and f:X—+ Y is an
open compact mapping, then Y is a metacompact semi-stratifiable
space.

Proof. The image of a paracompact space under an open compact
mapping is metacompact by Theorem 4 of [1]. Since open mappings
are pseudo-open, Y is also semi-stratifiable.

If the converse of Theorem 2.3 is true, then another characteri-
zation of semi-stratifiable spaces is available. Also, Corollary 2.4 is
an analogue of the well-known result that an open compact image of
a metric space is a space having a uniform base (metacompact and
developable).

3* Mappings from semi-stratifiable and semi-metrizable spaces*
Semi-stratifiable and semi-metrizable spaces are closely related in the
sense that a first countable semi-stratifiable space is semi-metrizable,
and conversely [4, Corollary 1.4]. Creede showed that semi-stratifiable
spaces are preserved under closed mappings, but a similar result is
not true for semi-metric spaces since there is no guarantee that the
image will be first countable, even if the domain is a separable
metric. Nor is the property of being semi-metrizable transmitted
under an open mapping, for in this case, Creede [5, Theorem 3.4] has
exhibited a non-semistratifiable Hausdorff space which is the open
image of a separable metric space. However, by placing a suitable
restriction on an open mapping, a class of open mappings can be
found in which members preserve both semi-stratifiable and semi-
metric spaces.

THEOREM 3.1. If X is semi-stratifiable and f:X-^Yisa pseudo-
open finite-to-one mapping, then Y is semi-stratifiable.

Proof. Let F c Y be an arbitrary closed set. Then f~ι{F) is
closed in X and has a dual semi-stratification {Un}. We will use
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Lemma 1.4 to show that the correspondence F —> {int[f(Un)]} is a dual
semi-stratification for Y.

Parts (a) and (c) are verified in the same manner as in the proof
of Theorem 2.3. To verify (b), assume z e n*=i int[f(Un)]. Then
there exist points xn e Un such that f(xn) = z for every n. Since /
is a finite-to-one mapping, there exists an integer m such that
s« e n ?=!#». But n:=i Un = f~\F) which implies that xmef~ί(F).
Hence, ze F and the proof is complete.

COROLLARY 3.2. The image of a semi-stratifiable space under an
open finite-to-one mapping is semi-stratifiable.

COROLLARY 3.3. The image of a semi-metric space under an
open finite-to-one mapping is semi-metrizable.
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