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The question is studied how a given tree is determined
by the collection of its asymmetric subtrees, The results are
analogous other partial answers to the Ulam-Kelly conjecture.

In [1], [2], [4], [3] several theorems are proved concerning the
following conjecture posed by P. J. Kelly [4]: If G and H are two
graphs with p vertices v, and u,; respectively (p = 3) such that for
all i: G — v; = H — u; then G and H are themselves isomorphic. In
[4] it is shown that this conjecture is true when G, H are trees. In
[1], [2], [5] improvements of this result are obtained, namely, know-
ledge any of the following collections is sufficient to conclude G = H
providing G, H are trees:

(1) all maximal proper subtrees [2]

(2) subtrees T — v, where v; is a peripheral vertex [1]

(3) non-isomorphic maximal subtrees [5].

Let G(T) denote the automorphism group of a tree T. If G(T) =
{identity} then T is called an asymmetric tree. Let 2 denote the
class of all asymmetric trees.

For a tree T consider the set of all asymmetric proper subtrees
of T. This set is naturally partially ordered by inclusion, denote by
A(T) the set of all maximal elements of this set, i.e. the set of all
maximal asymmetric subtrees. (By subtree is meant proper subtree
from now on.) Further denote by 2(T) the set of all isomorphism
types of A(T). (We denote by [G] the isomorphism type of the graph
G, hence WT) = {[T"]: T"e A(T)}.) We write A(T) = A(S) for trees
T and S, if there is a one-to-one mapping @: A(T) — A(S) such that
(T = T, for every T,c A(T).

We write 2UT) = A(S) if the sets W(T) and A(S) are equal. We
write T ;. for the tree consisting of three edge disjoint paths that
start from a common point and have lengths ¢, j, k.

We will investigate the dependence of [T] on A(T) and (T).

It is obvious that not every tree T will be determined by A(T),
since there are nonisomorhic trees with A(T) = @ (we do not include
the trivial tree in the collections A(T) and A(T)). But such trees
are characterized by the following known result:

ProrosiTiON 0.1. We have A(T) = @ +f T, < T, where T, =T, ,,
with T vertices is the minimal asymmetric tree and G < H means that
G is a proper full subgraph of H.
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Moreover, assuming A(T) = @, the minimal asymmetric subtrees:
cover T, i.e., every edge of T belong to some T'e A(T), with the
exception of the trees of one type. In view of this statement it
would seem reasonable to conjecture that 2(T) and T are in one-to-
one correspondence (up to isomorphism) providing A7) =+ @. But
this is not true, as is shown by the following class of examples:

Let (1), -+, ©«(n) be n natural numbers. We denote by T;y,....cm
the subdivision of the m-star (i.e., K, + K,, see [3]) obtained by
inserting i(k) — 1 points in the kth edge. Obviously WT;q....;m) =
{[T,.]} for every n if i(k) <3 fork =1, ---, n. The situation cannot.
be saved by considering A(T) rather that (T) since A(T%,,.) =
A(T,,.). The examples given here are not unique. We prove:

Main Theorem weaker form. Let T,S be asymmetric trees.
Then A(T) = AS) =S=T

Main Theorem stronger form. Let S, T be asymmetric trees.
Then A(T) = WS) = T'= S, with the exception of the following two
trees:

Ti 3,4 T

Since obviously A(T,., % A(T, it is enough to prove the stronger
form of the main theorem. In fact we prove this theorem in refor-
mulation of the problem as a reconstruction of a tree (see Theorem
2.1).

The paper has two parts. In first of them we investigate the
group of automorphisms of a tree in general and its connection to
asymmetry (Coroliary 1.2), in the second part we prove the main
theorem (Theorem 2.1). The notions of the graph theory not defined
here may be found in [3].

1. The automorphism group of a tree.

1 T thank B. Manvel, who found independently the examples of exceptional trees.
T+ and T and called my attention to them.
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THEOREM 1.1. Let T be a tree. Let Cy(T) = {f e G(T): fof = id.}.
Then Cy(T) generates G(T).

Proof. Since every symmetric group is generated by transpositions
and direct products and compositions see [3] preserve generators, the
theorem follows.

TurEoREM 1.1 has some interesting consequences:

COROLLARY 1.1. Let T be a symmetric tree (i.e., G(T) # id.).
Then there is e G(T), f = id. and fof = 4d.

This is clear by the above theorem. We remark that this is
already false for unicyclic graphs, since there is a graph X with
G(X) = C, (the cyclic group of order 3), see [3] p. 169.

COROLLARY 1.2. Let T be an asymmetric tree, d(x, T) = 1. (By
d(z, T) we denote the degree of the point x in the tree T.) Then
|G(T — x)| £ 2 (i.e. the removing of an endpoint of an asymmetric
tree gives rise to at most one symmetry).

Proof. Suppose for the contrary [G(T — ) > 2 for some
d(x, T) = 1. By Theorem 1.1 there are f,, f,e G(T — x) and f,of, =
foofs=1d., f1 = f.. Let [z, y]e E(T), then necessarily y = f.(y) +#
f(y) = y. Let us distinguish two cases: (i) T — & is a central tree
(see [1]), ¢ is the only center of T — x. Let Wf(e, y) be the path
joining y and c¢. Put =, = min{o(c, 2); z€ Wie, ), fiz) =2}, 1 =1, 2.
(o(c, #) is the distance between ¢ and z.) It can be proved easily that
n, = n, and that f,(z) = f.(z) where ze W(c, y), 0(, ¢) = n,. But then
f, = f,, for otherwise the number #, defined for fi'of, as n, was
defined for f,, would be greater than n,. But f, = f, by hypothesis.
(i) Let T — « be bicentral. We can use the same argument as in
(i) for the tree (T — )7, where for every T-bicentral tree the central
tree 77 is defined by: WV(T7) = V(T)U{e},ce V(T) and E(T") =
(BE(T) — {¢,, e.])Ule, ¢,]U e, ¢,], where ¢, ¢, are two centers of T.

ReEMARK. Corollary 1.2 gives a necessary condition for a tree T
to have an asymmetric extension to |7T'| + 1 vertices, which is itself
a tree. This condition is not sufficient.

2. Asymmetric congruence of trees. We are going to prove
the main theorem. This will be done in Propositions 2.1 — 2.8. A
difference between the proof presented here and the proofs used in
[11, [2], [4] is that we know less about the structure of (7). Thus
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to prove that some basic parameters of T are determined by A(Ty
we need existence theorems.
Let Te® be fixed from now on.

ProrosiTionN 2.1. WT) =@ if T =T,

This follows from Proposition 0.1. Thus let 2(7T) = @ from now
on.

Let (T, x) be a rooted tree, by G(T, ) we denote the.group of
all root-automorphisms, i.e., all automorphisms of T which leave 2
fixed. In an obvious sense we will speak about root-asymmetric tree,
root-isomorphic trees (7T, x) = (S, ) and so on.

Let T be a tree, the branch S of T at a point x is every maximal
subtree of T which contains # as an endpoint. Every branch at a.
center of T is called limb.

To determine |7T| we prove the existence of [T,]e D), |T,| =
IT] — 1. We prove first:

Lemma 2.1. Let (T, z,) be a root-asymmetric tree. Then there
is a vertex x,x £ %, d(x, T) = 1, such that (T — z, x,) 18 root-asym-
metric.

Proof. For |T| =2 the statement obviously holds. Let the
lemma hold for every (S, ¥), |S| < n. Let (T, x,) be a root-asymmetric-
tree, [T| = n. Define the relation < on V(z, T) = {z; [«, ] € E(T)}
by: x <y < there is an endpoint of 7, and (7, — z, ) = (1., %)-
(Equivalently by Corollary 1.2: there is an endpoint ze V(T,) and
feG(T — 2 such that f(y) =w, f(x) =vy.) Here T, denotes the
branch of T at x, containing .

Let », be a minimal vertex for the relation <. Then by the:
induction hypothesis there is xe T, such that (T, — =, »,) is root-
asymmetric and by the definition of < (T — =, x,) is a root-asymmetric
tree.

According to [1], a vertex » of a tree T is called peripheral if
there is ye V(T) and p(z, y) = diam T. The couple #, v we call a
peripheral couple.

PropoSITION 2.2. (1) Let T be a central tree, them either (1)
T=T 4mbk+ m odd or (ii) there is [T;]e WT), T; central, |T;| =
T — 1.

(IL) Let T be bicentral, then either (i) T = T, ., &k + m even
or (ii) there is [T, WT), T, bicentral, |T,| =|T]| — 1.

(III) For every T there is T;€ A(T), T, is a maximal subiree.

Proof I. Let T be a central asymmetric tree with the center c.
The following cases are possible:
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(a) for every peripheral vertex of T, there is a peripheral
couple disjoint with it

(b) T contains more than one peripheral couple and (a) does
not hold

(¢) T contains exactly two peripheral vertices.
In the case (a) we can use Lemma 2.1 since each T — & is a central
tree and hence (T — x,¢) is a root-asymmetric tree if 7 — x is an
asymmetric tree. Suppose that (c) holds: Let a,d be the only
peripheral vertices of T, ae R,, be R, the only radial limbs of T (i.e.,
branches at the center with a peripheral point). Let |R,| = |R,|. If
there are other limbs of 7, then we can apply Lemma 2.1 to their
union and find x such that [T — 2] e WT). Thus let R, R, be the
only branches of T at ¢. The proof ecan be finished by choosing a
convenient point ze Wi(a, b) (the unique path connecting a and b),
d(z, T) = 3 and considering the union of all branches of 7 at z which
contain neither o nor b. Using Lemma 2.1 we get an asymmetric
tree with the only exception T= T, ..., k& + m odd.

The case (b) can be handled similarly.

(II) can be proved by use of the graph 7""(see the proof of the
Corollary 1.2).

(III) is obvious by (I) and (II), since T,,;+ T.. implies that
T, . contains a maximal subtree which is asymmetric.

REMARK. The Proposition 2.1. (III) was recently proved in a
different context by J. Sheehan and J. A. Zimmer Jr. from the
University of Waterloo.

ProrosiTiON 2.3, Let {k, m} # {3, 4}. Then T\, s reconstructible
Jrom WT, . n). There ts W(T.,;,) = A(T,) (see the Introduction) and
there are no other such graphs.

Outline of proof. Obviously [T']e W(T,,.,,.) implies T,,, Z T, T
has only one vertex of degree = 3, and further |(T.,,,)] < 2. From
these facts one can verify the statement by exhaustion of cases.

ProposiTION 2.4. (i) T is central if diam T < diam T for
every bicentral subtree T' of T (diam T is the diameter of the tree T)
(ii) T s bicentral if diam T < diam T for every central subtree T
of T.

The proof is clear and is omitted.

By Propositions 2.2, 2.3, 2.4 we can determine from (7) whether
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T is central or bicentral. Thus from now on let 7T be central, T %
T im T 2 T,. Let ¢ be the center of T, » the radius of T, (see [3]).
The case T bicentral will be investigated later. The following lemma
deals with a special kind of trees, one that has a radial limb which
is a path (called a radial path).

LEMMA 2.2. The following two statements are equivalent:

(i) T satisfies one of the following properties: (a) T contains
a radial path (which is necessarily unique). (b) T = T, for some
n > 1, where T, (n natural number) is the tree defined by V(T,) =
1, ««-,m + 8}, E(T,) ={[t,t+1;2=1,---,n+ 5 U[4n + T U[n+
4, n + 8], (the tree T, is defined in the Introduction)

(i) 2T) satisfies one of the following properties: (a) For every
[T)e WT), T; contains a branch which is the path of length r. (b)
There is [T,] € W(T) such that every tree T;, [T,] = [T;] € W(T) contains
a branch which is the path of length », the tree T, itself contains a
branch at one of its centers which s the path of length r — 1.

Outline of proof. Let T contain a radial path. Since T is central,
we can assume that Wi, y) is a radial path (d(y, T) =1). By
asymmetry this is the only radial path in 7. Furthermore: If
xe V(T) — W, y),x¢ T'e A(T) then T' has a radial path. From
this it follows, by the maximality of the elements of A(T), that there
is at most one [T}] € (T), such that T, has no branch which is the
path of length ». It is now easy to conclude that either (iia) or (iib)
holds. Conversely let T have no radial path and suppose that A(T)
satisfies (iia) or (iib). We can conclude that T'= T, for some n > 1.
We can prove first that every limb of T is a radial limb and by a
similar method to that in the proof of Proposition 2.2 we can prove
T =T, The details are omitted.

PRrRoOPOSITION 2.5. Let m >1. The tree T, see Lemma 2.2 1s
reconstructible from W(T,).

The proof is simple (using Proposition 2.3).

PROPOSITION 2.6. If T contains a radial path, then T s recon-
| structible from A(T).

Proof. Let T’ contain the radial path (which is unique), and let
WT) = A(T). Then by Lemma 2.2 and Proposition 2.5 we know that
T has the radial path. Assume that (iib) of the Lemma 2.2 holds;
let |T,| = |T| — k, then either diam T, = diam T and 7 = 7" follows
easily, or diam T, < diam T. This case can occur if T has only two
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radial branches at ¢. Since (iib) holds, we know that R == ¢, where
R is the union of all non-radial limbs at ¢. Applying Lemma 2.2 to
(R, ¢) we can determine both radial branches of 7. It is easy to see
also that R is determined uniquely.

Case Lemma 2.2 (iia) can be handled similarly.
Now we can prove the main theorem for central trees:

PRrROPOSITION 2.7. Let T be central, then T 1is reconstructible

from A(T).

Proof. By Propositions 2.1, 2.2, 2.5, 2.6 we can assume T % T, ; .,
T %2 T, T does not contain a radial path. Consider 2, = {[T;] € 2(T);
{T;|+ 1=|T|, T; is central}.

We know (by the assumptions on 7), that there is x € R, where
R is a limb of the minimal cardinality, such that T — 2 e ,. In this
tree T — x we know all limbs except E. Let R, be a limb of the
minimal cardinality among all limbs different from R. Let (R}, ¢) be
a maximal root-asymmetric subtree of the limb (R,, ¢), which contains
a peripheral point. If there is 7" ¢ 9, such that 7" does not contain
the limb (R, ¢) and 7" contains the limb (R], ¢), then the branch
(R, ¢) is the only branch in 7" which was still unknown. If there is
no such tree 7" then (R, ¢) = (R], ¢).

To prove the main theorem for bicentral trees we could modify
the proofs of the previous propositions. We use a different proof.

ProprosiTION 2.8. Let T be a bicentral tree. Then T is recon-
structible from W(T).

Proof. Let T be a bicentral tree of the diameter 2r + 1; by the
Proposition 2.2 we can assume T % T,,.. If T contains a branch
which is a path of length » -+ 1, then for such a tree a statement
similar to Lemma 2.2 holds and 7T can be reconstructed from (T)
in a similar manner to that used in Proposition 2.6. Assume that T
does not contain a branch of length » + 1. Let us form the tree T~
by the definition given in the proof of Corollary 1.2. As seen from
the proof of the Proposition 2.7, T~ is determined by all the trees
in A(T") which have the same diameter as T~ . Since for such trees
the operation “-” preserves isomorphism the proposition follows.

Thus we finally have:
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THEOREM 2.1. Every asymmetric tree s treconstructible from
A(T). Every asymmetric tree is reconstructible from W(T), with the
exception of T, and T, ..
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