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Recently Konhauser considered the biorthogonal pair of
polynomial sets {Z:(z; k)} and {Y(2; k)} over (0, o) with respect
to the weight function x%¢~* and the basic polynomials x* and
2. For the polynomials Y,(x; k), a generating function, some
integral representations, two finite sum formulae, an infinite
series and a generalized Rodrigues formula are obtained in
this paper.

Biorthogonality and some other properties of Zx(x; k) and Y (x; k)
for any positive integer k¥ were discussed by Konhauser (1], [2]). For
k= 2, the polynomials were discussed earlier by Preiser [4]. For
£ =1, the polynomials Y3(x; k), as also Z%(x; k), reduce to the gene-
ralized Laguerre polynomials L&(x).

In a recent paper [3], we obtained generating functions and other
results for the polynomials Z%(x; k) in «*. The present paper is con-
cerned only with the polynomials Y2(x; k) in 2 which form the other
set of the biorthogonal pair. The results of the paper reduce, when
k =1, to some standard properties of L2(x). Simplicity of the proce-
dure for deriving the generating relation (2.1) which may be regarded
as our principal result, seems to be of some passing interest.

2, A generating function for Y (x; k). We begin with the
contour integral representation [2, (26)]

(2.1) Y k) = (k/Zm')g et + L[t + 1)F — 170 dt

(o}
where we take C as a closed contour enclosing ¢ = 0 and lying within
[t] < 1. If we make the substitution v = 1 — (¢+1)7*, we get another
integral representation for YjX(x; k), viz.

(2.2) Yz k) = (chi)“lgc/(l — )" Eexp [e{l — (1 — w) ™ u""" du

C’ being a circle with centre u = 0 and a small radius. By standard
arguments of complex analysis we obtain the generating relation

(23) 3 Yol b = (1—w e exp[a{l — (1 — u)™"]

for Re(a + 1) > 0, |u| < 1 and positive integers k.
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Since the generating relation (2.3) is of the form
A(w) exp [zH(u)] = 3} Yi(2; by,
7=0

it at once follows ([6], [5]) that the set { Y (x; k)} is of Sheffer A-type
zero. One of the several immediate consequences of this fact [5,
Theorems 73-76] is that there exists a sequence {;} independent of
2 and n such that

(2.4) DY@ k) = 3 ha Vw5 ).

In (2.2) putting s = 2*(1 — u)™!, we are led to still another inte-
gral representation

(2:5)  Yi(wi k) = @riyterwt | st et exp (<55 — o)t ds

where ¢ denotes the circle |s — 2*| = + with small ». Evidently o
may be any small closed contour encircling s = «F.

Evaluating the integral in (2.5) by the residue theorem, we obtain
a generalized Rodrigues formula:

(2.6) Yi(x; k) = (nl) lemat o[ Drsm+ etk exp (—87%)] ok
For k = 1, it reduces to the Rodrigues formula for LZ(x).

3. Applications. In this section we apply the generating rela-
tion of the previous section to obtain two finite sum formulae for

Y(z; k) and also to prove a result involving an infinite series of these
polynomials.

a. Two finite sums involving YXx; k). From the generating
relation (2.3) and the simple relation

(L = et = (L ot 3t (2E) wm,

if follows that
(3.1) Y k) = 3 <mz>-1(f“—;;—5) Vi (5 k)

=0

where « and B are arbitrary.
Also from (2.3), on using
(L — et exp [(@ 4+ gL — (1 — u)™¥]
= (1 — )= exp [a{l — (L — w)™ ¥ - (1 — w)~ 00"
x exply(l — (1 — uy™*]
we get that
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(3:2) Yoo + g k) = > Ya@s B Yia(y; b)
m=0
for arbitrary « and g.
b. A series of polynomials Y:(x; k). We show that

Yiu(@; k)u”
= (1 — e oxp (L — (1 — )] V(oL — )5 1)
Using the obvious result
l—u—2v=00—w{l—v1—u'}
we have that

Flu,») = (1 — u — o)« exp[afl — (1L — u — )]
= (1 — u)y P exple{l — (1 — u)"*}].-(1 — »(1 — )"l
cexpa(l — u) M1 — (1 — o1 — w)) =]
= (1 — u)~*+V/k exp [¢{l — (1 — u)—llk}]

-3 Yl — w)y B — w)~m,
m=0
applying (2.3). But using (2.3), we also find that

Flu,v) = S Ya(x; k)u + v)*

Ms 1

S M Y )
n=0 ml(n — m)!

n=0

=53 (mmf %“f) Yo, (@ kyuro

Comparing the coeflicients of v™ in the two expansions obtained for
F(u, v), we obtain (3.3).

This result is analogous to a property possessed by almost all the
classical orthogonal polynomials [5; 95(7), 111(1), 120(9), 144(23)] except
possibly by the Jacobi polynomials.
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