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This paper is concerned with modular annihilator A*-
algebras. Let A be an A*-algebra, B a maximal commutative
*-subalgebra of A and XB the carrier space of B. We show
that the following statements are equivalent: (i) A is a modular
annihilator algebra, (ii) Every XB is discrete, (iii) Every B
is a modular annihilator algebra, (iv) The spectrum of every
hermitian element of A has no nonzero limit points.

Let A be an A*-algebra which is a dense two-sided ideal
of a £>*-algebra 21, A** the second conjugate space of A and
πA the canonical embedding of A into A**. We show that
A is a modular annihilator algebra if and only if πA(A) is a
two-sided ideal of A** (with the Arens product). This
generalizes a recent result by B. J. Tomiuk and the author.

The theory of (left, right) modular annihilator algebras was
developed in [20]. In a recent paper [4], Barnes has extended this
study to semi-simple Banach algebras. He has proved an interesting
result which says that if A is a semi-simple Banach algebra, then
A is modular annihilator if and only if the spectrum of every element
of A has no nonzero limit points (see [4; p. 516, Theorem 4.2]). In
this paper, we show that a similar result holds for A*-algebras.

2* Notation and preliminaries* Notation and definitions not
explicitly given are taken from Rickart's book [15].

For any subset E of a Banach algebra A, let LA(E) and RA{E)
denote the left and right annihilators of E in A, respectively. Then
A is called a modular annihilator algebra if, for every maximal
modular left ideal I and for every maximal modular right ideal /,
we have RJJ) = (0) if and only if I = A and LA(J) = (0) if and only
if J — A. Let A be a semi-simple modular annihilator Banach
algebra. Then every left (right) ideal of A contains a minimal
idempotent (see [2; p. 569, Theorem 4.2]).

A Banach algebra with an involution x —> x* is called a Banach
*-algebra. A Banach *-algebra A is called a J3*-algebra if the norm
and the involution satisfy the condition | |x*α;| | = ||α;||2 (xeA). If A
is a Banach ^-algebra on which there is defined a second norm | . | ,
which satisfies, in addition to the multiplicative condition \xy\ ^ \x\ \y\,
the J3*-algebra condition \x*x\ = \x\2, then A is called an A*-algebra.
The norm | . | is called an auxiliary norm. Let A be an A*-algebra.
Then the involution x —•» x* in A is continuous with respect to the
given norm and the auxiliary norm and every closed *-subalgebra of
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A is semi-simple (see [15; p. 187, Theorem (4.1.15)] and [15; p. 188r

Theorem (4.1.19)]).
Let A be a Banach algebra which is a subalgebra of a Banach

algebra tt. For each subset E of A, cl(E) (resp. c\A(E)) will denote
the closure of E in A (resp. II).

Let A be a Banach algebra. For each element x e A, let SpA(X)
denote the spectrum of ^ in i . If A is commutative, XA will denote
the carrier space of A and CQ(XA) the algebra of all complex-valued
functions on XA, which vanishes at infinity. If A is a commutative
JB*-algebra, then A = C0(XΛ).

In this paper, all algebras and spaces under consideration are
over the complex field C.

3* Characterizations of modular annihilator A*-algebras* Our
first result, which is interesting in its own right, is useful in § 5.

THEOREM 3.1. Let A be an A*-algebra. Then the following
statements are equivalent:

( i ) A is a modular annihilator algebra.
(ii) The carrier space of every maximal commutative *-sub-

algebra of A is discrete.
(iii) Every maximal commutative ^-subalgebra of A is a modular

annihilator algebra.
(iv) The spectrum of every hermitian element of A has no

nonzero limit points.

Proof. (i)=>(iii). This follows immediately from [4; p. 517y

Corollary].
( i i i )=>(i) . Let |.j be the auxiliary norm on A. Assume

x = x* £ A and let B be a maximal commutative *-subalgebra of A
containing x. Then B has dense socle in (.( by [5; p. 288, Theorem
3.3]. Since the socle of B is included in the socle of A, x is in the
closure of the socle of A. It follows that A has dense socle in | . | .
By [21; p. 376, Lemma 2.8], | . | is a Q-norm on every maximal
commutative *-subalgebra of A. Thus | . | is a Q-norm on A by [5;
p. 258, Lemma 1.2]. Therefore A is a modular annihilator algebra
by [20; p. 41, Lemma 3.11].

(ϋ) ==> (iv). Let a; be a hermitian element in A and let B be a
maximal commutative * -subalgebra of A containing x. By [15; p. I l l ,
Theorem (3.1.6)],

SpB(x) - (0) c {f(x): feXB}d SpB(x) .

We suppose, on the contrary, that SpB(x) has a nonzero limit point
fo(x), where foeXB. Let {fn} be a sequence in XB such that
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fn(x)—>fo(%) and fn(x) are distinct. Let ε = £|/ 0(α)| We may
assume that \fn{x)\ ^ e (n = 1, 2, •••). For this given ε, there
corresponds a compact subset K a XB such that | f(x) \ < ε for all
f £ K. Since Xβ is discrete, K is finite. Hence {/w} ςt K. But
|/Λ(a?)| ^ ε for all n. This is a contradiction. Therefore Sp^α?) =
SpB(x) has no nonzero limit points.

(iv) => (ϋi). Let B be a maximal commutative *-subalgebra of A.
For each x e B, we can write x = y + iz where y and z are hermitian
elements in B. Since # and 2" have no nonzero limit points in their
range, it follows that z = y + iz has the same property. Therefore
by [4; p. 515, Theorem 4.1], B is a modular annihilator algebra.

(iii) =* (ii). Let B be a maximal commutative *-subalgebra of A.
Then by [2; p. 569, Theorem 4.2(6)], XB is discrete in the hull-kernal
topology. Therefore XB is discrete in the finer Gelfand topology.
This completes the proof of the theorem.

Let B be a commutative Banach algebra with carrier space XB.
Then B is called completely regular provided, for every closed subset
F c XB and p e XB — F, there exists x e B such that F(x) = (0) and
#(#) = 1. A commutative Banach algebra with discrete carrier space
is completely regular.

COROLLARY 3.2. Let A be an A*-algebra which is a dense sub-
algebra of a B*-algebra SI. Then A is a modular annihilator algebra
if and only if the following conditions are satisfied:

(a) % is a dual algebra.
(b) For Every maximal commutative *-subalgebra B of A, B

and o\(B) have the same carrier space.

Proof. Suppose A is a modular annihilator algebra. By [5; p.
287, Lemma 2.6], 91 has dense socle and therefore is a dual algebra
(see [11; p. 222, Theorem 2.1]). This gives (a). By Theorem 3.1(ii),
the carrier space of B is discrete. Therefore B is completely regular.
Hence it follows from [15; p. 175, Theorem (3.7.5)] that c\(B) and B
have the same carrier space. This proves (b).

Conversely, suppose conditions (a) and (b) hold. Since Sΐ is dual,
cl(J3) has discrete carrier space. Therefore the carrier space of B is
also discrete. Theorem 3.1 now shows that A is a modular annihilator
algebra. This completes the proof.

A Banach *-algebra A is called symmetric provided every element
of the form-α;*x is quasi-regular in A.

COROLLARY 3.3. Let A be an A*-algebra which is a dense subal-
gebra of a dual B*-algebra SI. Then A is a modular annihilator
algebra if and only if A is symmetric.
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Proof. If A is a modular annihilator algebra, then by the proof
of [15; p. 266, Theorem (4.10.11)], A is symmetric. Conversely
suppose A is symmetric. Let B be a maximal commutative *-subal-
gebra of A. Then by [15; p. 233, Corollary (4.7.7)], B is a semi-
simple symmetric algebra. Therefore B and cl(i?) have the same
carrier space (see [13; p. 219, Corollary ]). It follows now from
Corollary 3.2 that A is a modular annihilator algebra and the proof
is complete.

4* The Arens products on A*** Let A be a Banach algebra,
A* and A** the conjugate and second conjugate spaces of A, respec-
tively. The two Arens products on A** are defined in stages accor-
ding to the following rules (see [1]). Let x, y e A, f e A*, F, Ge A**.

(a) Define foX by (/oχ)(y) = f(xy). Then foχeA*.
( b ) Define Go/ by (Go f)(x) - G(f ox). Then Gofe A*.
( c ) Define F<>G by (FoG)(f) = F(Gof). Then FoGeA**.

A** with the Arens product o is denoted by (A**, °).
(a') Define x o'/ by (x o J)(y) = / ( ^ ) . Then xo'fe A*.
(V) Define / o fF by (/ o 'F)(^) = ^ o'/). Then fo'Fe A*.
(c') Define Fo'G by (Fo'G){f) = G{fo'F). Then FoffeA**.

A** with the Arens product o' is denoted by (A**, ©').
Each of these products extends the original multiplication on A

when A is canonically embedded in A**. In general, o and o' are
distinct on A**. If they coincide on A**, then A is called Arens
regular.

NOTATION. Let A be a Banach algebra. The mapping πA will
denote the canonical embedding of A into A** in the rest of the
paper.

LEMMA 4.1. Let A be a Banach algebra and let B be a maximal
commutative subalgebra of A. If πA(A) is a two-sided ideal of (A**, o),
then 7ΓB(B) is a two-sided ideal of (2?**, o).

Proof. This follows from the proof of (b) => (a) in [19; p. 533,
Theorem 5.1].

Let A be a £*-algebra. Then A is Arens regular and A** is a
I?*-algebra under the Arens product (see [7; p. 869, Theorem 7.1] or
[17; p. 192, Theorem 5]).

Lemma 4.2. Let A be a B*-algebra. Then A is a dual algebra
if and only if τrA(A) is a two-sided ideal of A**.
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Proof. This is [19; p. 533, Theorem 5.1].

5* The Arens product and modular annihilator A*-algebras*
Throughout this section, unless otherwise stated, A will be an A*-
algebra which is a dense two-sided ideal of a i?*-algebra 91. The
norm on A (resp. 21) is denoted by | | . | | (resp. | . | ) . We shall often
use, without explicitly mentioning, the following fact: For every
x e A, y e 21, we have

(5.1) \ \ x y ) \ ^ k \ \ x \ \ \ y \ a n d \\yx\\ < : k \\x\\ \y\ ,

where A: is a constant (see [14; p. 18, Lemma 4]).

LEMMA 5.1. Let A be commutative. If πA(A) is a two-sided
ideal of (A**, o), then A is a modular annihilator algebra.

Proof. Let XA be the carrier space of A. It follows easily from
[20; p. 40, Lemma 3.8] that A and 2ΐ have the same carrier space.
Therefore 21 = C0(XA). We show that XA is discrete. Suppose this
not so. Let f £ XA and let {ft} be a net in XA such that /*-->/ and
ftφf for all t. Let E be the closed subspace of A* spanned by
the ft. We claim that f ί E. In fact, we assume f e E. Choose
0 < ε < \\f\\/2k, where | | / | | denotes the norm of / in | | . | | and k is
a constant given in (5.1). Since f e E, there exists k{e C and f {e {ft}
(i — 1, 2, , n) such that

(5.2) Σ kt < ε .

Since ϊt = C<,(XA), there exists x{e 21 such that \xt\ — 1, f(xf) = 1 and
fi(Xi) = 0 (i = 1, 2, •••, n). Let a e A be such that \\x\\ ^ 1 and
\f{x)\ ^ | ί/ | |/2. By (5.1), we have

— (XX, '

k
1 .(5.3)

Since f,{xxY

that

(5.4)

But

This is a contradiction to (5.4). Hence f <£ E. Therefore there exists
an element Fe A** such that F(E) = (0) and F(f) Φ 0. Choose ye A
such that f(y) Φ 0. Then (Fo πA{y))(f) = F(f)f(y) Φ 0. Since / ( e E,

Xn)

xn) = 0 (i = 1, 2, ., n), it follows from (5.2) and (5.3)

I fίvr . . . Ύ \ I <^ hp <^ 11 f 11 /9
I / ^ X i x n ) \ <^ tcε <^ \\j W/Δ .

I / ( a ; ^ xn) \ =
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(FoπA(y)){ft) = F{ft)ft(y) = 0 for all t. This contradicts the facts
that FoπA(y) e πA(A) and ft—*f in XA. Therefore XA is discrete and
so by Theorem 3.1, A is a modular annihilator algebra. This completes
the proof.

In the following theorem, (21**, *) will denote the Arens product
on 21** and π the canonical mapping of 2t into 21**.

THEOREM 5.2. Let A be an A*-algebra which is a dense two-
sided ideal of a B*-algebra 2ί. Then the following statements are
equivalent:

( i ) A is a modular annihilator algebra.
(ii) 7UΛ(A) is a two-sided ideal of (A**, °).

Proof. ( i ) = » ( i i ) . Suppose (i) holds. By Corollary 3.2, 2ΐ is a
dual algebra and so by Lemma 4.2, ττ(2I) is a two-sided ideal of (21**, *).
Let e be an idempotent of A. Since A is a two-sided ideal of 21,
eA = e2I. For each feA*, we define the linear functional f.e on 21
by

(f-e){y) =f(ey) (yeϊl) .

Then by (5.1), / .ee2I*. For each xeA, let Φ be the mapping on
π(eA) into A** given by

Φ(π(ex))(f) = π(ex)(f.e) ,

for all / e i * . Then Φ(π(ex)) = πA(ex) and so Φ is a one-one mapping
of π(eA) onto πA(eA). For each #e2I*, let #|A be the restriction of
g to A. Since | . | ^ / 3 | | . | | for a constant β, g\AeA*. For every
element FeA**, let F be the linear functional on 21* defined by

F(g) = F(g\A) (geA*) .

Then Fell**. Since π(e) *Fe π(2I), it follows that π(e)*Fe π(β2t) =
π(eA). Straightforward calculations show that Φ(π(e)*F) = πΛ(e)oF
and therefore we have

(5.5) πA{e) oFe πA{A) (Fe A**) .

Let {et} be a maximal orthogonal family of hermitian minimal
idempotents in 2ΐ. It is easy to see that {ej c A. Let x e A and
FeA**. Since 21 is a dual algebra, by [14; p. 23, Lemma β],
x ~^txeb in | . | . Hence only a countable number of xet Φ 0; denote
those e/s for which xet Φ 0 by eu e2, •••. Let ajTO — Σίi=iχei (n — 1>
2, •••)• It follows from (5.5) that

(5.G) TΓ âO ° Fe πA(A) (n = 1, 2, . . . ) .
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For each feA*, we have

I(πA(Xn) oF - πA(x) oF)(f) \ = \F(f° {xn - x))\

^\\F\\\\fo{χn-χ)\\^k\\F\\\\f\\\xn-x\.

Since xn —>x in | . | , we have πA(xn) oF—* πA(x) o i*7 in | | . | | . It follows
from (5.6) that τr̂ (α ) OJ^G πA(A). A similar argument shows that
F°πA{x)eπA(A). Therefore πA(A) is a two-sided ideal of A**. This
proves (ii). (ii) => (i). This follows immediately from Lemma 4.1,
Lemma 5.1 and Theorem 3.1. The proof of the theorem is complete.

Let A be a modular annihilator i?*-algebra. It follows from
[8; p. 48, Theorem (2.9.5)(iii)] that A is dual (also see [20; p. 42,
Theorem 4.7]). Therefore the preceding theorem generalizes Lemma
4.2.

COROLLARY 5.3. Let A and 21 be as in Theorem 5.2. Then the
following statements are equivalent:

( i ) 7rA(A) is a two-sided ideal of (A**, o)
(ii) τr(2ΐ) is a two-sided ideal of (21**, *).

Proof. This follows from Theorem 5.2, Corollary 3.2, Lemma 4.2
and [20; p. 40, Theorem 3.7].

THEOREM 5.4. Let A be a reflexive A*-algebra which is a dense
two-sided ideal of a B*-algebra 21, then A is dual.

Proof. Since A is reflexive, by Theorem 5.2 and Corollary 3.2,
31 is a dual algebra and hence is w.c.c. Therefore by [14; p. 31,
Theorem 17], A is a dual algebra. This completes the proof.

It is well-known that a proper H*-algebra is dual. This fact
also follows from Theorem 5.4, since a proper iϊ*~algebra satisfies the
conditions of Theorem 5.4 (see [14; p. 31]).

Let H be a Hubert space and B(H) the algebra of all continuous
linear operators on H into itself with the usual operator bound norm.
Let LC{H) be the algebra of all completely continuous operators on
H and let τc(H) be the trace-class on H.

THEOREM 5.5. There exists a dual A^-algebra A ivhich is a dense
two-sided ideal of a B*-algebra such that A is Arens regular and
A** = πA(A) + i2**, where i?** Φ (0) is the radical of A**.

Proof. Let {Hλ} be a family of Hubert spaces such that at least
one Hλ is infinite dimensional. Let A = CΣ^ τc(H)))ι be the I^-direct
sum of {τc(Hλ)} and let 21 = ( Σ , LC(Hλ))0 be the 5*(oo)-sum of {LC(Hλ)}.
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Then A is a dual A*-algebra which is a dense two-sided ideal of SX
(see Theorem 9.2 in [18]). It is easy to verify that, as Banach
spaces, A is isometrically isomorphic to 31* and that in turn 31** is
isometrically isomorphic to the normed full direct sum Σx B{Hλ) of
{B(Hλ)}. Let F be a bounded linear functional on A*. Its restriction
to (ΣzLC(Hχ))0 ( c ΣAλB(Hλ)) determines an element F.eπ^A). Let

M = {EG A**: E(g) = 0 for all ge(Σx LC(Hλ))0} .

It is clear that F - F,eM. Since πA(A) φ A**, M Φ (0).
Let ίj be the trace operator on Hλ. For all / = (fλ) e A* = Σ

and x = (α )̂, 7/ = fc)eA, by [16; p. 47, Theorem 2] we have

(/o^)(?/) = f(xy) = Σ*xfx(XχVx) = Σ*χtχ(XχVxfx)

= ΣxtiivJxXx) = Σ*x(fχXχ)(Vx)

= (fχ)(v)

Since /a; e (^LC(H?))01 we have

(πA(x)oE)(f) = S(/o») = ^(/α?) - 0 ,

for all feA*, EeM and α e A. Since 7Γ̂ (A) is weakly dense in A**,
it follows from the weak continuity of left multiplication that
A**ojkf=(θ). Similarly we can show that Mo'A** = (0). Since
πA(x)oF= πA{x)o'F and F<>πA(x) = Fo'πA(x) for all FeA**, xeA>
we have

MoπA(A) = πA(A)oM= πA{A)o'M= Mo'πΛ{A) = (0) .

Let F, G e A** and write F = F1 + (F - F,) and G = Gι + (G - GJ
with Fλ, G.eπ^A). Since F - F, and G - ^eΛf, we have F<>G =
FιoGι = FofG and so A is Arens regular by definition. Since
A**oM= Mo A** = (0), M is a two-sided ideal of A**. Now it is
clear that M is contained in the radical R** of A**. Since
R**Γ)πA(A) = (0), we have M = R** and therefore A** = πΛ(A) + R**.
This completes the proof.

COROLLARY 5.6. (Σi)τc(Hχ))ΐ* ^s a *-a>lgebra.

Proof. This follows from Theorem 5.5 and [17; p. 186, Theorem

1].

6* Unsolved questions* 1. Let H be a Hubert space. For
1 ^ p < oo, let Cp be the algebra given in [9; p. 1089]. Then Cp is
an A*-algebra which is a dense two-sided ideal of LC(H). It is easy
to show that for each T eCp, T is contained in the closure of TCP in
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Cp. Therefore by [14; p. 28, Lemma 8], Cp is a dual algebra (also
see [3; pp. 10 - 11]). For p = 2, Cp is an if*-algebra and therefore
C** = C2. For p ^ 2 and 1 <; p < oo, is Cp Arens regular and is
C** semi-simple?

2. Let A be a dual A*-algebra which is a dense two-sided ideal
of a B*-algebra. Is A Arens regular?

REMARK. We know that a dual A*-algebra may not be Arens
regular. Let A be the group algebra of an infinite compact abelian
group. Then A is a dual A*-algebra which is not an ideal of 21,
where SI is the completion of A in an auxiliary norm (see [14; p. 32]).
By [7; p. 857, Theorem 3.14], A is not Arens regular.

The author would like to thank the referee for suggestions and
simplifications of the original proofs in § 3.
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