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A function f(n), defined on the positive rational integers,
is said to be additive if and only if for every pair of coprime
integers a and b the relation

Slab) = fla) + f(b)

is satisfied. Thus an additive function is determined by its
values on those integers which are prime powers, In an
extensive paper Erdos raised the question of characterising
those real valued additive functions which have a limiting
distribution (mod 1).

It is our present purpose to give such a characterisation.

He proved, in particular, that an additive function f(n) is certain-
ly uniformly distributed in the sense of Weyl if f(p) —0 as p— oo,
and if the series

5 [(0)
p

diverges.

For the remainder of this paper we understand a distribution
Junction F(z) (mod 1), or more shortly a distribution function, to
have the properties

(i) F(z) is tncreasing in the wide sense

(ii) F@) = F(z+) for all values of z, that is F(z) is right
CONLINUOUS.

(iii) Fr=01if2<0, and=11 2= 1.

We say that a sequence of distribution functions F,(z), n =1, 2, -+
has a limiting distribution (mod 1) if and only if there exists a
function F'(z), satisfying the above three conditions, so that at every
pair of points of continuity (a, 8) of F(z), 0 < @ < 8 < 1, we have

F.(8) — F.() — (F(8) — F(a) , (n— o).

We notice that in the range 0 < z < 1 any such limiting distribution
F(z) is determined only up to an additive constant. When the func-
tion F'(z) is
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1,z=1,
F(z) =42, 0<z<1,
10,2 =0,

this definition coincides with Weyl’s definition [7] of uniform distribu-
tion (mod 1).

We shall say that the sequence of real numbers «, @, --- has a
limiting distribution (mod 1) if and only if the sequence of distribution
functions defined by

n
F.g)=n" > 1, n=12 -
xj_S,ZTr;md 1)

for 0 < 2 < 1, and extended in the obvious way outside this interval,
have a limiting distribution in the above sense.

In what follows, for each real number a we denote by {a} the
fractional part of «, that is the least positive representative of the
residue class a(mod 1); and by |/«|| the distance of a from the
nearest integer. Thus we have

[lal] = min({a}, 1 — {a}) .
we shall also have occasion to use the function

1ify>0,
Signy = 0if y=20,
—1ify<O0.

With these definitions, and the above meaning of limiting
distribution, we can now state:

THEOREM 1. A real valued additive number theoretic function
f{n) has a limiting distribution (mod 1) if and only if for each
integer v one of the following three conditions 1s satisfied:

(1) For each real value of t the series

2071 f(p) — tlog pif

18 divergent.
(ii) For each positive integer v, vf(27) is half an odd rational
integer.

(iii) Both of the series
2p7livf)IF, Zp™ lIvf(p) | Sign (3 — W (D))

are convergent.
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In particular f(n) is uniformly distributed (mod 1) if and only if at
least one of the first two conditions is satisfied for each integer.

THEOREM 2. For each integer v set
g, = |(1 + 27'e&/® 4 O—2g2nivf (%) + e

Then a limiting distribution (mod 1) for the function f(n) 1is
(a) Continuous if and only if

N 2‘\ e, exp(— 2> sin*tyvf(p)) — 0, (N — c0) .

(b) Absolutely continuous with a derivative that belongs to the
Lebesgue class L0, 1] if and only if the series

i &l exp(— 4 >, sin’my f(p))

18 convergent.

In the statement of this theorem is to be understood that if a
series

> ptsin'y f(p)
P
diverges, then the corresponding number
exp<__. 2 ZP‘ . .)

si defined to be zero.
We note that in either of the circumstances (a) or (b) of Theorem
2 we can assert that there exists a distribution F'(z) so that
nt Z 1——>F(2), (]’L——)oo),

fln)=z

holds for every real value of z.

For the proofs of these theorems we need essentially two lemmas.
Before stating the first of these we discuss some results of Halasz
[4].

A number theoretic function ¢g{(n) is said to be multiplicative if
for every pair of coprime integers a, b, the relation

g(ab) = g(a)g(b)

is satisfied. In his paper of 1968 Halasz gives necessary and sufficient
criteria that multiplicative functions of wide classes have mean-value
theorems of the type
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limn= 3 g(m) ewists .
n—oo m=mn
It is convenient to restate some of his results. We shall adopt
for the moment the notation of his paper [4], save that in place of
f(n) we set gn),n =1, ..-. For a fixed value of P(= 3) we define

a multiplicative function g*(n) by

/o 0 fOI'p§P,k:1’2’.-.

g* (") = .
(g(p)* for p > P,k =1,2,+-- .

We note here that no essential use is made of the size of P during
any of the proofs of the theorems in Haldsz’ paper, it being a
parameter introduced as a technical convenience to ensure the non-
vanishing of certain products (see pp. 369-370 of [4]). We shall also
need the function

A1) 1(if n= " p prime, k=1,2, ---
n) = 5-
k10 otherwise.

If now g(n) is assumed to satisfy the inequality |g(n)| < 1 for every
integer m, then as Theorem 2 of his paper Halasz proves that

x—-l Z g(m) — COM Lo(log x)xHriao _{_ O(x) , (x_> 0O) ,
mZa 1 + 1a,

with the following understanding:
If for every value of ¢ the series

i n ' An)(1 — Re g*(n)n=*)
diverges ([4] p. 380), or if

1+ 9@2" + g@)27 + +++) =0

([4] p. 369) then C,L.(log x) is to be replaced by zero.

On the other hand, if for some values of ¢ (which is in fact
unique) the above series converges, then we set a, = ¢, and have ([4]
p. 382),

C, = exp(— g,ln“‘ Mz)(1 — Re g*(n)n“”)) .

The function L.(log x) is defined by

LO( - L 1) - exp(i i% Im (g*(n)n"“)) , o>1,

so that as ¢ —1 + ;
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1 ~ _ S Mn) _ g* —it
COLO(O — 1) exp< Zﬁ pov 1 — g¥(m)n~*)) .
Here H(s) is the function defined for complex numbers s by
H) = T1(1+ 220 4 9@ Ay (1 - 2B,
? ps p ¢ p>P ps

which is absolutely convergent for ¢ = Re s = 1.

Finally, we need the fact, also proved in [4], that L.(u) is a
slowly oscillating function. In other words, | Ly(u)| = 1 for all values
of > 0, and

Lyy) —1
Ly(u)

holds uniformly for v < y < 2u, as u — oo.

We can now state our first lemma.

LemMA 1. Let g(n) be a complexr wvalued multiplicative number
theoretical function which satisfies

lgm)| =1, n=12 ).
Then
limn™" >, g(m) =C

n—oc0 mIn

exists under the following circumstances:
(i) with C=0:
FEither
~1=g@ = g@) = -

Or, the series
; p~ (L — Re g(p)p~™)
diverges for each real value of t.

(ii) with C == 0:
The series

2 p7(0(0) — 1)
converges.
The second of these two assertions was first proved by Delange

[1]. The first assertion was proved for real valued functions, in
particular, by Wirsing [8], and in its full generality by Halasz [4].
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Proof. If for any positive integer », Re g(2") > — 1, then
Re<1 + 32 g(2’")> >1- mij 2m = 0,
so that in our present circumstances the series

1+ 3 27" g(2r)
can vanish only if Im ¢(27) =0, (» =1,2, ---). The first assertion
now follows from the remarks concerning Halasz’ paper [4] which
were made preeceding the statement of Lemma 1, provided we note
that uniformly for all integers N > P,

>, w7 M)l —Re g*(n)n~) — 3, p'(1 — Re g(p)p™)

P<REN P<PE=

& 2 1
< < ©o
=S EW Y 0 D

In order to prove the second assertion we note that if the non-
zero mean-value exists then, (in the notation of the earlier remarks),
C, # 0, so that for some value of ¢ the series

2 n* Mn)(1 — Re g*(n)n=")

converges. Moreover, as @ — <o,
(1) Lylog z)x* — A =0,

say.

We next note that we can find an unbounded sequence of positive
real numbers =z, 2, +-+so that z{—1 as »— o. For, given any
positive real number ¢ we can apply Dirichlet’s theorem on Diophantine
approximation (see for example Hardy and Wright [5] pp. 156-157)
to deduce that there exists a nonzero integer m so that

l_m_t‘
!! ar ! <€
Setting z = ¢® we see that
|z — 1] = |exp(tmt) — 1| < 2me exple) .

If ¢/2r is irrational our assertion is justified by choosing a sequence
of ¢ converging to zero. It ¢/2w is rational it is clear that we can
even choose a sequence z,, z,, -+ 80 that 2 = 1 holds for all members
of the sequence.

It follows that



ON THE LIMITING DISTRIBUTION OF ADDITIVE FUNCTIONS (MOD 1) 55

Lylogz,)— A, N — oo .

Suppose now that ¢ = 0. Then because of the slowly-oscillating
nature of the function L,(n),

Ly(log(z, exp(nt™))) — A , (n — co),
and therefore from (1)
(z, exp(mt™))* — 1, (n— o).

Since by the construction of the z, the left-hand side converges to
—1, we obtain a contradiction. It follows that ¢ = 0, and that

lim 3,20 (1 — g*(w)

614 m=1

exists, and is finite. By a standard Tauberian theorem of Hardy
and Littlewood we deduce that the series

iMs

T M) = g%(w) and 3 p7(L — g(p))

converge.

That these conditions are indeed sufficient follows from Theorem
1 of Halasz [4].
This completes the proof of Lemma 1.

LEMMA 2. A sequence of distribution functions F.(2) (mod 1)
n=12 -+ has a limiting distribution (mod 1) if and only if for
each integer v

o = limSl 7 AF(2)

0

n~—oo

exists.
Moreover, the limiting distribution, if it exists, 1s continuous if
and only if

N Zlvlavl'_)or (N_-’OO)7

vl

and absolutely continuous with a derivative which belongs to the class
L0, 1] if and only if the series

S

y=—o0

converges.

Proof. The results of this lemma are well known to workers
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in the field. A proof of the main assertion can be sketched briefly
as follows:
The necessity of the condition is clear from integration by parts
and an application of Lebesgue’s theorem of dominated convergence.
For sufficiency, we note that the sequence «,, a,, - - - satisfies

S ez = limgl “dF,(x) = 0

v=1 n—oo J0O

g .
Z zn eZ,‘{ML(E
u=1

for all integers m and complex numbers 2, ---,2,. In the classical
terminology it is positive definite. Then by a theorem of Herglotz
[6] there is a Borel measure ¢ on [0,1], and so a corresponding
distribution function F(x) = p¢[0, x], so that

Q, = Se AF(m), (=0,+1, 42 ).

If now « and g satisfy 0 < a < 8 < 1, then by the stone-Weierstrass
theorem the characteristic function of the interval (a, 8] can be
uniformly approximated on the unit interval 0 < z < 1 by polynomials
in exp(2miz). If a and B are points of continuity of F(x) it follows
eagily from the monotonicity of distribution functions that

F.(a) — F.(@) = (F(8) — F(a) , (n— e) .

The second and third results of the lemma are special cases of
results from the theory of Fourier series. Both can be found for
example, in Edwards [2]. In its present form the assertion concern-
ing the possible continuity of a limiting distribution is due to Wiener.

Proof of Theorem 1. It is clear from Lemma 2 that the distribu-
tions

F () =n > 1
mEn
Fim)s£z (mod 1)

have a limiting distribution (mod 1) if and only if the limits

limn~ 3 e = lim| = dF,@), (=0,%1,+2 )

n—00 m=1 n—c0 So

exists. We can then apply Lemma 1 to deduce that for each integer
vy one of the following three conditions is to be satisfied:
(i) For each value of ¢ the series

% p~1(1 _ Re(ezziyf(p)p—it))

diverges
(11) —1= ezr:if(z)y — 627:if(22)u —
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(iii) The series
Z p——l(l . eZ:ivf(p))

converges.
Of these conditions only the first and third call for comment.
Since for each real number y
Re(l — &%) = — 2¢in*ry = — 2(sin 7 || y||)®
and
yr<smy=yif 0=y=m/2,

the first condition is equivalent to the series

2.7 IPf(p) — t log plf?

being divergent for each value of ¢.
Likewise, in (iii) the series

2 p7 (1 — Re(e>™) and 3 p~ [[vf(p) [F

converge and diverge together. Moreover, for each real number y
Yyl

Si — <
|ISiny —y| = s

so that

Sin 27/ (p) = Sin 27{vf(p)} = Sin 2z {|¥f(p)[|. Sign — {Pf()})
= Sign(z — {pf(p)) Crlvf (o1 + 0([¥f()])

and uniformly for all P > 0
| . .
| S, p~Sin2mf(p) — 27 5, Sign(s — ()P~ 12/ )]
< constant 3} p~' [[vf(p)|I* .

It is now clear from the previous remark that the series

Z p—l(l . ez:iyf(p))

and the pair of series
sz p~ [y f(p)|| Bign(z — {vf(P)}), 2 p~ [[vf(p) |

converge and diverge together.
This completes the proof of Theorem 1.

Proof of Theorem 2. To prove Theorem 2 we prove that uniform-
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ly for all integers v, |a,| lies between two positive constant multiples
of

€, exp <w 2 % p~t Sinzm)f(p)) .

We note from the remarks preceeding Lemma 1 that if a, = 0 then
it has the form

_ H( + ia,)

a, ;
1+ 1a,

exp(~ S (1 — g*@mny)

where
H(i + 1a,)
= H<1+£;ﬂ+w+ ...)(]___M)H(l_{__g(pﬂ_}_ ...>

p>P p P PEP

_ H(1+g—(pﬂ+ )1+ L8 = o)

PSP p>P Ve

SOV =S LY,
p

It is clear that since g(27) == — 1, for every integer r (since «, is
nonzero),

¢, = [H(1 + da)el (1 + dao) 7' = ¢

for suitable positive constants c,, ¢, depending at most upon f(n).
Moreover,

=

> l(—;ﬂ 1 - g*(m)n~") — ; —;— 1—-g*@pr™ | =1,

n=1

and from these two facts the desired inequalities (2) follow.
If @, = 0 then either ¢, = 0, or ¢, # 0 but

>, p~ Sin*y f(p)
diverges, so that with our earlier convention
exp(— >, p~'Sin*zvf(p)) = 0,
»

and the inequalities (2) are still valid.
Theorem 2 now follows immediately from Lemma 2.



ON THE LIMITING DISTRIBUTION OF ADDITIVE FUNCTIONS (MOD 1) 59

REFERENCES

1. H. Delange, Sur les functions arithmétiques multiplicatives, Ann. Sci. Ecole Norm.
Sup. 78 (1961), 273-304.

2. R. E. Edwards, Fourier Series; A Modern Introduction, N. Y. Holt, Rinehard and
Winston, 1967.

3. P. Erdos, On the distribution of additive functions, Ann. of Math. 41 (1946), 1-20.
4. G. Halasz, Uber die Mittelwerte multiplikativer zahlentheoretischer Funktionen,
Acta Math. Acad. Sci. Hung., 19 (1968), 365-403.

5. G. G. Hardy, An Introduction to the Theory of Numbers, E. M. Wright, Oxford,
4th edition 1960.

6. XK. Urbanik, Lectures on Prediction theory, Springer lecture notes, 44, Berlin 1957.
7. H. Weyl, Gleichverteilung von Zahlen mod Eins, Math. Annalen 77 (1916), 313-52.
8. E. Wirsing, Das asyptotische Verhalten von Summen wunder multiplikative Funk-
tionen II, Acta Math. Acad. Sci. Hung., 18 (1967), 411-467.

Received May 11, 1970.
UNIVERSITY OF COLORADO AND UNIVERSITY OF NOTTINGHAM






PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California
Los Angeles, California 90007
C. R. HoBBY RICHARD ARENS
University of Washington University of California
Seattle, Washington 93105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

UNIVERSITY OF SOUTHERN CALIFORNIA

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 38, No. 1 March, 1971

Bruce Alan Barnes, Banach algebras which are ideals in a Banach algebra . . . .. 1
David W. Boyd, Inequalities for positive integral operators.................... 9
Lawrence Gerald Brown, Note on the open mapping theorem .................. 25
Stephen Daniel Comer, Representations by algebras of sections over Boolean

SPUACES .« o oottt e et e e 29
John R. Edwards and Stanley G. Wayment, On the nonequivalence of

conservative Hausdorff methods and Hausdorff moment sequences . .. ... .. 39
P. D. T. A. Elliott, On the limiting distribution of additive functions (mod 1).. . .. 49
Mary Rodriguez Embry, Classifying special operators by means of subsets

associated with the numerical range . ............. ... ... i, 61
Darald Joe Hartfiel, Counterexamples to a conjecture of G. N. de Oliveira . ... .. 67
C. Ward Henson, A family of countable homogeneous graphs.................. 69
Satoru Igari and Shigehiko Kuratsubo, A sufficient condition for

LP-multipliers ... ... e e 85
William A. Kirk, Fixed point theorems for nonlinear nonexpansive and

generalized cONtraction MAPPINGs . .. .....c..ouuee i i nii e, 89
Erwin Kleinfeld, A generalization of commutative and associative rings . . . .. ... 95
D. B. Lahiri, Some restricted partition functions. Congruences modulo 11 ... ... 103
T. Y. Lin, Homological algebra of stable homotopy ring mw+ of spheres.......... 117

Morris Marden, A representation for the logarithmic derivati
meromorphic function. .................c.c.oiiiiiia..

John Charles Nichols and James C. Smith, Examples concern
for metric-dependent dimension functions.............
Asit Baran Raha, On completely Hausdorf{f-completion of a c«
Hausdorffspace . ............. ..
M. Rajagopalan and Bertram Manuel Schreiber, Ergodic auto
affine transformations of locally compact groups. . .. ...
N. V. Rao and Ashoke Kumar Roy, Linear isometries of some
SPACES . oo e e e e e
William Francis Reynolds, Blocks and F-class algebras of fin
Richard Rochberg, Which linear maps of the disk algebra are
Gary Sampson, Sharp estimates of convolution transforms in
JURCHIONS oo oo e
Stephen Scheinberg, Fatou’s lemma in normed linear spaces
Ken Shaw, Whittaker constants for entire functions of several
variables ........ ... ...
James DeWitt Stein, Two uniform boundedness theorems. . . .
Li Pi Su, Homomorphisms of near-rings of continuous functia
Stephen Willard, Functionally compact spaces, C-compact sp
of minimal Hausdorff spaces.........................
James Patrick Williams, On the range of a derivation. . .. ...


http://dx.doi.org/10.2140/pjm.1971.38.1
http://dx.doi.org/10.2140/pjm.1971.38.9
http://dx.doi.org/10.2140/pjm.1971.38.25
http://dx.doi.org/10.2140/pjm.1971.38.29
http://dx.doi.org/10.2140/pjm.1971.38.29
http://dx.doi.org/10.2140/pjm.1971.38.39
http://dx.doi.org/10.2140/pjm.1971.38.39
http://dx.doi.org/10.2140/pjm.1971.38.61
http://dx.doi.org/10.2140/pjm.1971.38.61
http://dx.doi.org/10.2140/pjm.1971.38.67
http://dx.doi.org/10.2140/pjm.1971.38.69
http://dx.doi.org/10.2140/pjm.1971.38.85
http://dx.doi.org/10.2140/pjm.1971.38.85
http://dx.doi.org/10.2140/pjm.1971.38.89
http://dx.doi.org/10.2140/pjm.1971.38.89
http://dx.doi.org/10.2140/pjm.1971.38.95
http://dx.doi.org/10.2140/pjm.1971.38.103
http://dx.doi.org/10.2140/pjm.1971.38.117
http://dx.doi.org/10.2140/pjm.1971.38.145
http://dx.doi.org/10.2140/pjm.1971.38.145
http://dx.doi.org/10.2140/pjm.1971.38.151
http://dx.doi.org/10.2140/pjm.1971.38.151
http://dx.doi.org/10.2140/pjm.1971.38.161
http://dx.doi.org/10.2140/pjm.1971.38.161
http://dx.doi.org/10.2140/pjm.1971.38.167
http://dx.doi.org/10.2140/pjm.1971.38.167
http://dx.doi.org/10.2140/pjm.1971.38.177
http://dx.doi.org/10.2140/pjm.1971.38.177
http://dx.doi.org/10.2140/pjm.1971.38.193
http://dx.doi.org/10.2140/pjm.1971.38.207
http://dx.doi.org/10.2140/pjm.1971.38.213
http://dx.doi.org/10.2140/pjm.1971.38.213
http://dx.doi.org/10.2140/pjm.1971.38.233
http://dx.doi.org/10.2140/pjm.1971.38.239
http://dx.doi.org/10.2140/pjm.1971.38.239
http://dx.doi.org/10.2140/pjm.1971.38.251
http://dx.doi.org/10.2140/pjm.1971.38.261
http://dx.doi.org/10.2140/pjm.1971.38.267
http://dx.doi.org/10.2140/pjm.1971.38.267
http://dx.doi.org/10.2140/pjm.1971.38.273

	
	
	

