Pacific Journal of Mathematics

A SUFFICIENT CONDITION FOR L^p -MULTIPLIERS

SATORU IGARI AND SHIGEHIKO KURATSUBO

Vol. 38, No. 1 March 1971

A SUFFICIENT CONDITION FOR L^p-MULTIPLIERS

SATORU IGARI AND SHIGEHIKO KURATSUBO

Suppose $1 \leq p \leq \infty$. For a bounded measurable function ϕ on the n-dimensional euclidean space \mathbf{R}^n define a transformation T_{ϕ} by $(T_{\phi}f)^{\wedge} = \phi \hat{f}$, where $f \in L^2 \cap L^p(\mathbf{R}^n)$ and \hat{f} is the Fourier transform of f:

$$\hat{f}(\hat{\xi}) = \hat{f} \frac{1}{\sqrt{2\pi}^n} \int_{\mathbb{R}^n} f(x) e^{-i\xi x} dx .$$

If T_{ϕ} is a bounded transform of $L^{p}(\mathbf{R}^{n})$ to $L^{p}(\mathbf{R}^{n})$, ϕ is said to be L^{p} -multiplier and the norm of ϕ is defined as the operator norm of T_{ϕ} .

THEOREM 1. Let $2n/(n+1) and <math>\phi$ be a radial function on R^n , so that, it does not depend on the arguments and may be denoted by $\phi(r)$, $0 \le r < \infty$. If $\phi(r)$ is absolutely continuous and

$$M=||\,\phi\,||_\infty+\left(\sup_{R>0}R\int_{_R}^{^{2R}}\left|rac{d}{dr}\,\phi(r)\,
ight|^2dr
ight)^{\!\!1/2}<\infty$$
 ,

then ϕ is an L^p -multiplier and its norm is dominated by a constant multiple of M.

To prove this theorem we introduce the following notations and Theorem 2. For a complex number $\delta = \sigma + i\tau$, $\sigma > -1$, and a reasonable function f on \mathbb{R}^n the Riesz-Bochner mean of order δ is defined by

$$s_{\scriptscriptstyle R}^{\scriptscriptstyle \delta}(f,\,x)=rac{1}{\sqrt{2\pi}^{\scriptscriptstyle R}}\!\int_{|\hat{\xi}|<\scriptscriptstyle R}\!\left(1-rac{|\hat{\xi}\,|^2}{R^2}\!
ight)^{\!\delta}\,\hat{f}(\hat{\xi})e^{i\xi x}d\hat{\xi}$$
 .

Put

$$t_R^{\delta}(f, x) = s_R^{\delta}(f, x) - s_R^{\delta-1}(f, x)$$

and define the Littlewood-Paley function by

$$g_{\delta}^{*}(f, x) = \left(\int_{0}^{\infty} \frac{|t_{R}^{\delta}(f, x)|^{2}}{R} dR\right)^{1/2}$$
 ,

which is introduced by E. M. Stein in [3]. Then we have the following.

Theorem 2. If $2n/(n+2\sigma-1) and <math display="inline">1/2 < \sigma < (n+1)/2, \ then$

$$A \parallel g_{\sigma}^{*}(f) \parallel_{p} \leq \parallel f \parallel_{p} < A' \parallel g_{\sigma}^{*}(f) \parallel_{p}$$

where A and A' are constants not depending on f.

The first part of inequalities is proved by E. M. Stein [3] for p=2 and by G. Sunouchi [4] for $2n/(n+2\sigma-1) . The other parts will be shown by the conjugacy method as in S. Igari [2], so that we shall give a sketch of a proof.$

Proof of Theorem 2. For $\delta=\sigma+i\tau$, $\sigma>-1$, and t>0 let $K^{\delta}_t(x)$ be the Fourier transform of $[\max\{(1-|\xi|^2t^{-2}),\ 0\}]^{\delta}$. Since $K^{\delta}_t(x)$ is radial, we denote it simply by $K^{\delta}_t(r)$, r=|x|. Then $K^{\delta}_t(r)=2^{\delta}\Gamma(\delta+1)$ $V_{(n/2)+\delta}(rt)t^n$, where $V_{\beta}(s)=J_{\beta}(s)s^{-\beta}$ and J_{β} denots the Bessel function of the first kind. Considering the Fourier transform of $t^{\delta}_R(f,x)$ we get

$$t_{\scriptscriptstyle R}^{\scriptscriptstyle \delta}(f,\,x) = \frac{1}{\sqrt{2\pi}^n} \int_{{\bf R}^n} f(y) \, T_{\scriptscriptstyle R}^{\scriptscriptstyle \delta}(x\,-\,y) dy \,=\, f * T_{\scriptscriptstyle R}^{\scriptscriptstyle \delta}(x) \ ,$$

where $T_R^{\mathfrak{z}}(x) = R^{-2} \Delta K_R^{\mathfrak{z}-1}(x)$ and $\Delta = \partial^2/(\partial x_1^2) + \cdots + \partial^2/(\partial x_n^2)$.

Let H be the Hilbert space of functions on $(0, \infty)$ whose inner product is defined by $\langle f, g \rangle = \int_0^\infty f_R \overline{g}_R R^{-1} dR$. For a function $g_R(x)$ in $L^1(\mathbf{R}^n; H)$, that is, H-valued $L^1(\mathbf{R}^n)$ -function, define an operator $\int_0^1 v^\delta$ by

$$v^{\scriptscriptstyle \delta}(g,\,x) = rac{1}{\sqrt{2\pi}^{\scriptscriptstyle n}} \int_{{m R}^n} < T^{\scriptscriptstyle \delta}_{\scriptscriptstyle R}(y),\, {ar g}_{\scriptscriptstyle R}(x-y) > dy$$
 .

By the associativity of convolution relation

$$\int_{\mathbb{R}^n} v^{\delta}(g, x) \overline{f}(x) dx = \int_{\mathbb{R}^n} \langle g(x), t^{\overline{\delta}}(f, x) \rangle dx$$

for every f in $L^2(\mathbf{R}^n)$ and g in $L^2(\mathbf{R}^n; H)$, which implies that $v^{\bar{j}}$ is the adjoint of $t^{\bar{s}}$.

By the Plancherel formula

$$\begin{array}{l} (2) \qquad \qquad ||t^{\delta}(f)||_{L^{2}(H)} = \left(\int_{|\xi|}^{\infty} \left(1 - \frac{|\xi|^{2}}{R^{2}} \right)^{2\sigma-2} \frac{|\xi|^{4}}{R^{5}} \, dR \right)^{1/2} ||f||_{L^{2}} \\ = B_{\sigma} \, ||f||_{L^{2}} \, , \end{array}$$

where $B_{\sigma} = [B(2\sigma-1,2)/2]^{1/2}$, $\delta = \sigma + i\tau$, and $\sigma > 1/2$. Therefore $f = (1/B_{\sigma}^2)v^{\bar{\sigma}}t^{\delta}(f)$ for $f \in L^2(\mathbf{R}^n)$. By Schwarz inequality $|\langle t^{\delta}(f,x), g(x) \rangle| \leq ||t^{\delta}(f,x)||_H ||g(x)||_H$. Applying this inequality with (2) to (1) we get

$$||v^{\delta}(g)||_{L^{2}} \leq B_{\sigma} ||g||_{L^{2}(H)}.$$

On the other hand

$$\int_{\|x\|>2\|y\|} ||T_R^{\delta}(x+y)-T_R^{\delta}(x)||_H dx < A_o e^{\pi|\tau|/2}$$

for $\sigma > \alpha + 1$, $\alpha = (n-1)/2$ (see [4]), where $A_{p,q}$ denotes here and after a constant depending only on p, q and the dimension n. Thus by the well-known argument (see, for example, Dunford-Schwartz [1; p. 1171] we get

$$||t^{\delta}(f)||_{L^{q}(H)} \leq A_{q,\rho} e^{\pi |\tau|/2} ||f||_{L^{q}}$$

and

$$||v^{\delta}(g)||_{L^{q}} \leq A_{q,\rho} e^{\pi |\tau|/2} ||g||_{L^{q}(H)}$$

for $1 < q \le 2$ and $\delta = \rho + i\tau$, $\rho > \alpha + 1$. Fix such a ρ and a q.

Remark that the Stein's interpolation theorem (see [5; p. 100]) is valid for H-valued L^p -spaces and apply it between the inequalities (2) and (4), and (3) and (5). Then we get

$$||t^{\sigma}(f)||_{L^{p}(H)} \leq A_{p,\sigma} ||f||_{L^{p}}$$

and

$$||v^{\sigma}(g)||_{L^{p}} \leq A_{p,\sigma} ||g||_{L^{p}(H)}$$

for $1 and <math>\sigma > (n/p) - \alpha$.

Since $f = (1/B_o^2)v^\sigma t^\sigma(f)$, we get Theorem 2 for $2n/(n+2\sigma-1) from (6) and (7). The case where <math>2 \le p < 2n/(n-2\sigma+1)$ is proved by the equality (1) and the conjugacy method.

Proof of Theorem 1. Let $f \in L^2(\mathbf{R}^n)$. By definition

$$(8) t_R^{_1}(T_{\phi}f, x) = -\frac{1}{\sqrt{2\pi}^n} \int_{|\xi| < R} \frac{|\xi|^2}{R^2} \phi(\hat{\xi}) \hat{f}(\hat{\xi}) e^{i\xi x} d\xi.$$

Put

$$F(r\omega) = F(\hat{\xi}) = rac{-1}{\sqrt{2\pi}^n} rac{|\hat{\xi}|^2}{R^2} \hat{f}(\hat{\xi}) e^{i\xi x}$$
 ,

where $r = |\hat{\xi}|$ and ω is a unit vector. Then

$$t^{\scriptscriptstyle 1}_{\scriptscriptstyle R}(T_\phi f,\,x) = \int_{\scriptscriptstyle 0}^{\scriptscriptstyle R} \phi(r) \Bigl(\int_{\mid \omega \mid = 1} F(r\omega) d\omega \Bigr) \, r^{\scriptscriptstyle n-1} dr$$
 .

The last term is, by integration by parts, equal to

Thus

$$t^{\scriptscriptstyle 1}_{\scriptscriptstyle R}(T_\phi f,\,x) = \phi(R) t^{\scriptscriptstyle 1}_{\scriptscriptstyle R}(f,\,x) - \int_0^R \!\! rac{d}{dr} \, \phi(r) \, rac{r^2}{R^2} \, t^{\scriptscriptstyle 1}_{\scriptscriptstyle r}(f,\,x) dr \; .$$

By the Schwarz inequality the last integal is, in absolute value, dominated by

$$\Big(rac{1}{R}\!\int_{\scriptscriptstyle 0}^{\scriptscriptstyle R}\!\Big|rac{d}{dr}\,\phi(r)\,\Big|^{^{2}}\,r^{2}dr\Big)^{^{1/2}}\Big(rac{1}{R^{^{3}}}\int_{\scriptscriptstyle 0}^{\scriptscriptstyle R}|t_{r}^{_{1}}\!(f,\,x)|^{^{2}}r^{^{2}}dr\Big)^{^{1/2}}\;.$$

Divide (0, R) into the intervals of the form $(R/2^{j+1}, R/2^j)$ and dominate r^2 by $R^2/2^{2j}$ in each interval. Then the first integral is bounded by

$$\textstyle \sum\limits_{j=0}^{\infty} \frac{1}{2^{j-1}} \, \frac{R}{2^{j+1}} \int_{R/2^{j+1}}^{R/2^{j}} \left| \frac{d}{dr} \, \phi(r) \right|^{2} \! dr \leq 4 \sup_{R>0} R \int_{R}^{2R} \left| \frac{d}{dr} \, \phi(r) \right|^{2} \! dr \; .$$

Therefore

$$egin{aligned} g_{_{1}}^{*}(T_{\phi}f,\,x) & \leq ||\,\phi\,||_{\infty} igg(\int_{_{0}}^{\infty} rac{|t_{_{R}}^{1}(f,\,x)|^{2}}{R}dRigg)^{_{1/2}} \ & + 2 \Big(\sup_{_{R>0}} R igg)_{_{R}}^{^{2R}} \left|rac{d}{dr}\,\phi(r)
ight|^{^{2}} dr \Big)^{^{_{1/2}}} \Big(\int_{_{0}}^{\infty} |t_{_{r}}^{1}(f,\,x)|^{^{2}} r^{^{2}} dr \int_{_{r}}^{\infty} rac{dR}{R^{^{4}}} \Big)^{^{_{1/2}}} \ & \leq rac{2}{^{_{1}\!\!\sqrt{3}}} \, M g_{_{1}}^{*}(f,\,x) \;. \end{aligned}$$

Thus, if 2n/(n+1) , then by Theorem 2 we have

$$||T_{\phi}f||_{p} \leq A' ||g_{1}^{*}(T_{\phi}(f))||_{p} \leq \frac{2}{\sqrt{3}} A'M ||g_{1}^{*}(f)||_{p} \leq \frac{2}{\sqrt{3}} AA'M ||f||_{p},$$

which completes the proof.

Finally the authors wish to express their thanks to the referee by whom the proof Theorem 2 is simplified.

REFERENCES

- 1. N. Dunford and J. T. Schwartz, Linear Operators, Part II, Intersci. Publ., 1963.
- 2. S. Igari, A note on the Littlewood-Paley function $g^*(f)$, Tôhoku Math. J., 18 (1966), 232-235.
- 3. E. M. Stein, Localization and summability of multiple Fourier series, Acta Math., 100 (1958), 93-147.
- 4. G. Sunouchi, On the Littlewood-Paley function g* of multiple Fourier integrals and Hankel transformations, Tôhoku Math. J., 19 (1967), 496-511.
- 5. A. Zygmund, Trigonometric Series, vol. 2 2nd ed., Cambridge, 1958.

Received October 12, 1970.

MATHEMATICAL INSTITUTE, TOHOKU UNIVERSITY AND

DEPARTMENT OF MATHEMATICS, HIROSAKI UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305

C. R. HOBBY University of Washington Seattle, Washington 98105 J. Dugundji Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. Wolf K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON

OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics

Vol. 38, No. 1

March, 1971

Bruce Alan Barnes, Banach algebras which are ideals in a Banach algebra	1
David W. Boyd, Inequalities for positive integral operators	9
Lawrence Gerald Brown, <i>Note on the open mapping theorem</i>	25
Stephen Daniel Comer, Representations by algebras of sections over Boolean	
spaces	29
John R. Edwards and Stanley G. Wayment, On the nonequivalence of	
conservative Hausdorff methods and Hausdorff moment sequences	39
P. D. T. A. Elliott, On the limiting distribution of additive functions (mod 1)	49
Mary Rodriguez Embry, Classifying special operators by means of subsets	
associated with the numerical range	61
Darald Joe Hartfiel, Counterexamples to a conjecture of G. N. de Oliveira	67
C. Ward Henson, A family of countable homogeneous graphs	69
Satoru Igari and Shigehiko Kuratsubo, A sufficient condition for	
L ^p -multipliers	85
William A. Kirk, Fixed point theorems for nonlinear nonexpansive and	
generalized contraction mappings	89
Erwin Kleinfeld, A generalization of commutative and associative rings	95
D. B. Lahiri, Some restricted partition functions. Congruences modulo 11	103
T. Y. Lin, Homological algebra of stable homotopy ring π^* of spheres	117
Morris Marden, A representation for the logarithmic derivative of a	
meromorphic function	145
John Charles Nichols and James C. Smith, <i>Examples concerning sum properties</i>	
for metric-dependent dimension functions	151
Asit Baran Raha, On completely Hausdorff-completion of a completely	
Hausdorff space	161
M. Rajagopalan and Bertram Manuel Schreiber, <i>Ergodic automorphisms and</i>	
affine transformations of locally compact groups	167
N. V. Rao and Ashoke Kumar Roy, <i>Linear isometries of some function</i>	
spaces	177
William Francis Reynolds, <i>Blocks and F-class algebras of finite groups</i>	193
Richard Rochberg, Which linear maps of the disk algebra are multiplicative	207
Gary Sampson, Sharp estimates of convolution transforms in terms of decreasing	
functions	213
Stephen Scheinberg, Fatou's lemma in normed linear spaces	233
Ken Shaw, Whittaker constants for entire functions of several complex	
variables	239
James DeWitt Stein, Two uniform boundedness theorems	251
Li Pi Su, Homomorphisms of near-rings of continuous functions	261
Stephen Willard, Functionally compact spaces, C-compact spaces and mappings	
of minimal Hausdorff spaces	267
James Patrick Williams, On the range of a derivation	273