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A SUFFICIENT CONDITION FOR L*-MULTIPLIERS

SATORU IGARI AND SHIGEHIKO KURATSUBO

Suppose 1 < p < oo, For a bounded measurable function
¢ on the n-dimensional euclidean space R” define a transfor-
mation Ty by (Tsf)* = ¢f, where fe L0 L#(R") and f is the
Fourier transform of f:

G| :fv%n Smf(ﬂ})e“i&w dx .

If T4 is a bounded transform of L?(R") to L?(R"), ¢ is said
to be Lr-multiplier and the norm of ¢ is defined as the
operator norm of Ty,

TareoreM 1. Let 2n/(n +1) < p < 2n/(n — 1) and ¢ be a
radial function on R", so that, it does not depend on the
arguments and may be denoted by ¢(r), 0 = r < oo, If ¢(r)
is absolutely continuous and

2R

d
dr

J:}J«,’)Ilm+<supR5 (7 Zd¢)”2<oo,
R>0

r

then ¢ is an L?-multiplier and its norm is dominated by a
constant multiple of M,

To prove this theorem we introduce the following notations and

Theorem 2.

For a complex number 6 = o + iz, 6 > —1, and a reason-

able function f on R* the Riesz-Bochner mean of order ¢ is defined

by

Put

J 3 — 1 { ]S]z ° s Npibr gz
(F ) = —— s,
s2(J> @) V'2x" S]f]<]»’ <l R ) fQed

Gy ) = sk, @) — si7'(f, @)

and define the Littlewood-Paley function by

gi(f, ») = <§:° ﬁgg]%_ogyi dR)l/e |

which is introduced by E. M. Stein in [3]. Then we have the

following.

THEOREM 2. If 2n/(n + 20 —1) < p <2n/(n — 20 + 1) and 1/2 <
o < (n+ 1)/2, then

All gz () il = 1L < A Lgr () 1la s

85
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where A and A’ are constants not depending on f.

The first part of inequalities is proved by E. M. Stein [3] for
p»p =2 and by G. Sunouchi [4] for 2n/(n + 20 — 1) < p < 2. The
other parts will be shown by the conjugacy method as in S. Igari
[2], so that we shall give a sketch of a proof.

Proof of Theorem 2. Ford = o + 17,0 > —1,and ¢ > 0let K} (v)
be the Fourier transform of [max {(1 — [£[?¢7?), O0})°. Since Kl(») is
radial, we denote it simply by K/(»), r=|x|. Then K/(r)=2T(6+1)
Vinmss(rt)t®, where Vi(s) = Jy(s)s™® and J; denots the Bessel function
of the first kind. Considering the Fourier transform of t3(f, «) we
get

tfin) = | A0 Tale = v)dy = £2Thm)

where Ti(x) = R2AKY Y (x) and 4 = 0*/(6xl) + «++ 4 0%/(023).
Let H be the Hilbert space of functions on (0, c) whose inner

product is defined by {f, ¢> = r frgzR'dR. For a function gr(z) in
0
LYR"; H), that is, H-valued L}(R")-function, define an operator [v’ by

o, o) = = | < Ta0), Gale — ) > dy
By the associativity of convolution relation
(1) |, 7@ af@de = | <@, 67,0 > do

for every f in L*(R") and ¢ in L*(R*; H), which implies that +* is the
adjoint of #.
By the Plancherel formula

1 e = (| (1= B0 L ar) 1
=B fls

where B, = [B(2o — 1, 2)/2]'*, 6 =0 + 47, and ¢ > 1/2. Therefore f =
1/B)vit’(f) for fe L*(R"). By Schwarz inequality | < t°(f, ), g(x) > |
= 1 9 lx ll9@) |lx. Applying this inequality with (2) to (1) we
get

(2)

(3) H,va(g)HLzéBngHLz(H) .
On the other hand
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S‘ ‘ (H Ti@w + y) — Ti(x) || de < Ae
zi>2ly

for 0> a+ 1, a=(n—1)/2 (see [4]), where A, , denotes here and
after a constant depending only on p, ¢ and the dimension n#. Thus
by the well-known argument (see, for example, Dunford-Schwartz [1;
p. 1171} we get

(4) ) oo = Agoe™ ] ]l Le
and
(5) [2°(9) |0 = Ao 9] Lo

for1<¢g=2and 0 =p+1,0>a+1. Fix such a p and a q.

Remark that the Stein’s interpolation theorem (see [5; p. 100]) is
valid for H-valued L?-spaces and apply it between the inequalities
(2) and (4), and (8) and (5). Then we get

(6) () o = Apo | Fl]2r
and
(7) v @) lr = Apo gz

for 1 < p=<2and o> (n/p) — .

Since f = (1/B)v°t°(f), we get Theorem 2 for 2un/(n+ 20 —1) <p
<2 from (6) and (7). The case where 2 < p < 2n/(n — 20 + 1) is
proved by the equality (1) and the conjugacy method.

Proof of Theorem 1. Let fe L*(R"). By definition

1 —_ 1 IE( £\ piéx J=
(8) tlof,0) = — —== | LEL si@eca: .
Put
F IEI itx ,
(rw) = F(§) = 1/2 " f@e
where » = |&| and ® is a unit vector. Then

R
(T, f, 2) = J( ¢(7»)<SM=1 F(ow)da)) i
The last term is, by integration by parts, equal to

(R)S =iy SM Fro)do _g —¢(r)drs soids | Flsw)do .

Jlol=1

Thus
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2

;2 &(f, ydr .

R
0

E(Tof, ©) = SRS, )= | < 500)

By the Schwarz inequality the last integal is, in absolute value,
dominated by

40
RJo
Divide (0, R) into the intervals of the form (R/2’"', R/2’) and dominate
»® by R?/2% in each interval. Then the first integral is bounded by

d ...
‘&7—,?(7)

: rzdr>1/2 (

R . . Zd 1/2
(|1 16 @) rear)

S B L AT (-2 0 ‘ar
;21‘—1 57 SR/ZHI o é(r)| dr < 48;1}3}2 e 2 9(0)‘% ar .
Therefore

0! (T,f, 0) = 11911-( | LDl ap)™

0

s 2(sup BY || 'ar) ([T 1005 oy priar | UEY

R>0

2 «
~<_—1/-——:—3=Mgl (f, ) .

Thus, if 2n/(n + 1) <p < 2n/(n — 1), then by Theorem 2 we have

} 2 . 2
T < A’ || g (T, < ——A'M]||gt = = AA'M o
TS 1, = A" g (To(F) 11 73 gt (f) 1] 3 1ral
which completes the proof.
Finally the authors wish to express their thanks to the referee

by whom the proof Theorem 2 is simplified.
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