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A REPRESENTATION FOR THE LOGARITHMIC
DERIVATIVE OF A MEROMORPHIC FUNCTION

MORRIS MARDEN

A new representation is developed for the logarithmic
derivative of a meromorphic function f in terms of its zeros
and poles, using as parameters some of the critical points
of f. Applications are made to locating all but a finite
number of critical points of f,

1. The principal result.

THEOREM 1.1. Let f be a meromorphic function of finite order
0 possessing the finite zeros a, s, @, +++ and poles b, by, by, »-+. Let
i &y voee L, be any n = [p] distinct zeros of the derivative f’ of f
which are mot also zeros of f. Then for z+a;b;  =1,2,8, --+)

F@ e v = 4@
1.1 = _
o &) B vae—a) Evb)E—15)

where ¥(z) =1 for n =0,
1.2) VR =@ —0)@F—0) - (z—C,) for n>0.

In (1.1) the convergence is uniform on every compact set excluding
all the a; and b;.

In the case that f is a rational function with m =zeros and p
poles, identity (1.1) reduces to the familiar formula

FOI® =560 - 56— b)".

Furthermore, if the second summation is omitted in (1.1), identity
(1.1) reduces to one which we had previously obtained [See 1] for
entire functions of finite order.

2. Proof. Being a meromorphic function, f can be written as
a ratio of two entire functions, each of which has an Hadamard
representation in terms of its zeros. Thus,

(2. f@) = 2" 1 [B(efas, p)/Blelbs, 0]

where m is an integer (positive, negative or zero); P(z) is a poly-
nomial of degree at most n = [p]; p and ¢ are nonnegative integers
not exceeding » and
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Ew,p) = 1 —w)explu + 1/2u* + «+« + (1/p)u?]

if »p > 0 whereas E(u, 0) = (1 —u). Taking the logarithmic derivative
of (2.1) and simplifying, one finds that

2.2) L@ ™ pry 4+ AG) — BR)
J® z
where
2P had
2.3) A = ]21 T B = Z—<z———b)

By hypothesis, f({,) =0,k=1,2, ---, n. Hence, from (2.2), follows
that for k. =1,2, ---, n

(2.4) P& = —(m/C) — AG) + BE) -

Since P’(z) is a polynomial of degree at most n — 1, it can be repre-
sented by the Lagrange Interpolation Formula as

P’(Z) _ o P’(Ck) .
(z) =) (2 — C)

Hence, using (2.3) and (2.4), one finds that

P'(z) i m O Ch
—= = — — - 2.2
V{z) = GGz — &) FiE alv (C)( — ) — ay)
o ce
5 S s
== b (L) (R — Ck)(Ck —by)
In view of the fact that sums A(z) and B(z) are uniformly and
absolutely convergent on every compact set that omits all the a; and

b;, the order of summation of the double sums in (2.5) can be reversed.
Thus the first double sum in (2.5) becomes

(2.5)

g = 1 S(z)  S(ay)
(2.6) JE:L a? kz,l VICCe — )z — &) ]Z 5z — ay) [q,'/(z) q/f(aj)]
where
@.7) S(z) = V(z) Z <

'*1( - Ck)"/’,(z:k)

Since the polynomial S(z) is of degree at most n—1 with S({,) = %,
the polynomial

(2.8) T(z) = Siz) — z*

is of degree at most » such that
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TE) =0, for k=1,2 -+, m.

Therefore T(z) = ¢¥(z), where ¢ is a constant that may be zero.
Accordingly,

S() = 27 + ¢ ¥ (?)

and the sum (2.6) becomes

(2.9) )y & S

FYv@ak—a)  Fe)e—a)

Similarly the second double sum in (2.5) reduces to

o 27 < 1
(2.10) S (z)bh(z — by) 321 V()= — b))

Finally, on use of the Lagrange Interpolation Formula for 1/v(z),
the single sum in (2.5) becomes

=71 1 1 m 1 1
ey zxfls Lo | L -m»f 1., 11
) 2 k=1 Ck g — gk ”l/,’f (Ck) k4 "l//'(O) ’Ir'/‘(z)

Substituting from (2.9), (2.10) and (2.11) into (2.5), one reduces
(2.2) to

o L@ myE e @ SR
2.12 = — —_
R P M S R vy St vy Ty

However, the first term here may be dropped since it is obtainable from
the first or second sum in (2.12) by allowing either m a; (if m > 0)
or —m b; (if m < 0) to coalesce at 0. Thus identity (1.1) has been
established.

3. Location of critical points. An immediate consequence of
Theorem 1.1 is the following:

THEOREM 3.1. Let f be a meromorphic function of finite order
O possessing the finite zeros a,, d,, @i, -+ and poles by, by, b, «-+ and
let Ty Gy ovoy, Loy be any n + 1 = [p] - 1 distinct critical points of f
which are not also zeros of f. Then

> 1 & 1

3.1) >, =2 — , .

SO aGa) - Goa) TG b)E—b) - LBy

Equation (3.1) follows from (1.1} on setting z = {,, writing out
+r(a;) according to (1.2) and cancelling the factor (&) # 0.

As an application of (3.1), the following will now be proved.
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THEOREM 3.2. Let D, and D, be two regions with which can be
associated a set R of points  such that a ray from C to some point v
separates D, from D, and such that imequality

0<arg[(v —O/(z — O]l <=w/(n + 1) (mod 27)
holds for all z in one of the regions D,, D, and inequality
—xw/(n+ 1) <arg[v —0/(z— 0] <0 (mod 27)

holds for all z in the other regiom. Let f, a meromorphic function
of finite order p, have all tts zeros in D, and all its poles in D,.
Then at most m = [p] critical points of f lie in R.

Proof. If on the contrary #--1 distinet critical points &, £,y +++,C,
were in R, identity (3.1) holds for them in relation to the zeros and
poles of f. By hypothesis, one can associate with each {,, a point
v such that for 7 = 1, 2, 8, --- the inequalities

) Ve — ék T
3.3 - arg Lk ok 0 mOd 2T

hold (or those with a; and b; interchanged).
Setting

T = LI ~ S/ — Gl
one infers that
0 < arg T(a;) < m, —7 < arg T(b;) <0,

for all . This means that

0< argg1 T(a;) < 7w,

- < :;Lrgg1 Ty < 0.

Consequently,

T # 376
in contradiction to (3.1). Consequently, at most % distinet critical

points ¢, can lie on R, as was to be proved.
As an illustration, let f be a meromorphic function of order p,
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1 <0< oo, and let

~

FIGURE 1
D,={z=2a+ iy:2 >0, 0=h<y<ztan[r/(n + D]}
D,={=2+1w:2>0, —h>y> —xtan[x/(n + )]} .
Then, according to Theorem 3.2, at most % critical points of f

lie in the region

R={=c+w:a<0, |yl <minlh, |z|tan][z/(n + 1)]}

REMARK. In identity (1.1) and the subsequent theorems, f'(2)
may be replaced by the linear combination f’(z) + Mf(z) or more
generally by

Fi(®) = f'(®) + f&)g'(2)

where g¢(z) is an arbitrary polynomial of degree at most =, provided
& &y Gy o+ £, are taken as the zeros of F,(z). This follows from
the fact that the meromorphic function F(z) = ¢’“f(z) is also of order
0, has the same zeros and poles as f and F'(2) = e’ F\(2).
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