Pacific Journal of

Mathematics

FATOU’S LEMMA IN NORMED LINEAR SPACES

STEPHEN SCHEINBERG




PACIFIC JOURNAL OF MATHEMATICS
Vol. 38, No. 1, 1971

FATOU’S LEMMA IN NORMED LINEAR SPACES

STEPHEN SCHEINBERG

This note presents a generalization of Fatou’s lemma to
arbitrary normed linear spaces, Several examples illustrate
the situations in which this notion is meaningful, The main
theorem gives an abstract characterization of the Fatou
property. In particular this resolves the case of any reflexive
space, An example shows that Fatou’s lemma may fail even
for uniform convergence in a normed algebra of continuous
functions,

Frequently in analysis one obtains a function by a limit-
ing process which is weaker (less demanding) than con-
vergence in the norm. For example, a continuous function
may be obtained as the point-wise, but not necessary uni-
form, limit of other continuous functions, Even though the
limit is not a norm limit, one may still need to know that the
norm of the limit function is no greater than the norms of
the approximating functions, The classical case is, of course,
Fatou’s lemma: if f,— f pointwise, then

(1£1 <lim inf §|ful.
Another common situation is this, A subspace Ac C(X) is
given which has a norm, || /|| =sup|f|. If f.— f pointwise
(or uniformly), does it follow that ||f|] < lim inf ||f,]]?
The answer is ‘‘yes” quite often, but can be ‘“no,” even
when A is a subalgebra,

Motivated by a wide variety of examples, I wish to consider the
following general situation. Throughout this paper A will be a
normed linear space, not necessarily complete, and .7~ will be a local-
ly convex Hausdorff topology on A which is weaker (coarser) than
the norm topology. Say that Fatou’s lemma holds for A relative to
7 if whenever a;—a in 7, it follows that ||la|| < lim, infsz, || al.
It is usually easier to apply the equivalent condition stated in the
following proposition.

PROPOSITION. Fatow’s lemma holds for A relative to .9 < whenever
ag—pa in 7, it follows that ||a || < sup| as ||.

Proof. = is obvious, since sup = lim inf. For =, let a5 in
7 be given. We may assume lim, inf,, ||a;|| = L < «, for other-
wise there is nothing to prove. Fix ¢ > 0. Given v, 38 = v with
Hasll = L +e. Write this 8 as B(v) and we obtain @pn —> @ With
sup; || a5 || £ L + . By hypothesis, then ||a||< L+¢. Now let ¢ — 0.
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It may be instructive to examine a few examples.

1. For each EF, S E, & E, < --- with each E; measurable and
U E; = [0, 1], the topology .7~ of uniform convergence on every E;
is locally convex and Hausdorff. Egoroff’s theorem shows that if
measurable f, — f pointwise, then f,—f in & for some such 7.
In this manner the classical Fatou’s lemma becomes a special case
of the definition above.

2. Let A=C'[0,1], ||f|l =sup|f]| + sup|f’'|, and 7 be the
topology of pointwise convergence. To verify Fatou’s lemma, suppose
fox) — f(x) for each ». Let x, maximize |f| and @, maximize |f’|.
Then [fu(x + 0) — fu()]/0— [f(x + 0) — f(®)]/0, implying f'o(w, + 6.0)—
f'(x,+ 66) by the mean-value theorem. This takes care of the part of
the norm depending | f’|, the part depending on |f | following from
fo@)) = f(2). The same result holds for || f || =sup(|f|+ [f']) or
| £l = max (sup | f|, sup | f’|), ete. Using the appropriate differen-
tial quotients we can extend this example to any of the usual C*-
norms and of course to other manifolds.

3. Let D be an open connected subset of the plane which is
the interior of its closure D. Let A = all functions continuous on
D which are analytic on D, with the sup norm, and .7 = the
topology of convergence in each derivative at some fixed point z,€ D.
To conclude || f|| < sup|| fall from f¥(z) — f*¥(z,) (@ll k), one may
argue this way: if sup || f.|| = o, done; if sup||f.|| < o, then a
standard normal families argument shows that some subnet converges
uniformly on compact subsets of D. This implies that

[ f(2) | < sup, | ful?) | < supa || foll

for each ze D, which completes the proof. See de Leeuw [1] for a
different proof of a similar example.

4, Let A = all continuous functions on [0, 1] satisfying || f|| =
sup|f |+ 22" f(1/n)| < o and let .7~ be the topology of pointwise
convergence. The proof of Fatou’s lemma for this example is a direct
consequence of the classical case for a discrete measure plus part of
the proof in Example 2.

5. Let A = all C*' functions on the circle with C*' norm, 9 =
the topology of convergence in each Fourier coefficient. If f, — f in
7, then K, * f, — K, = f uniformly, since the Fejer kernel K, uses
only finitely many coefficients. By the argument in example 2,
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| K, = f]] <sup, || K, = f, | and since K, * f—f uniformly (and even in
norm), we get

[/l = sup, [ K, * f || = sup, sup; [ K, = f; || .

The proof is completed by the observation that ||K,xg|| < |lg]|l for
any ¢g. See [1] for abstractions and generalizations of this example.

In discussing the general situation let us use X* for the space
of all continuous linear mappings of a topological vector space X into
the scalar field. Observe that (4, 7 )*< A*. If X is a normed
linear space, let U(X) be the unit ball of X.

THEOREM 1. Let A, 7 be given. These are equivalent.

(1) Fatow’s lemma holds for A relative to F.

2) (A4, 77)y* N U(A*) is weak--dense in U(A*).

(8) For every ac A, [[a|l =sup{lp(@)|: pe(4, 77)% ||| =1}

Proof. 1—3: It is sufficient to prove (3) for an arbitrary a, of
norm 1. Let C={a:||a| <1 — ¢}, where ¢ > 0. By (1) the closure
C of C in .7 does not contain a,. Since C is convex, circled, and
contains 0, there is a functional @ e (A, 7 )* with

P(a) > sup{|P(a)|:ae C} = sup{|P(a)|: aeC} = (¢ |[@] .
Since || a, || = 1, this proves (3).
3—2: If (2) is false, let D= (4, 9 )*NU(A*) and let Te

U (A*) be chosen so that ¥ ¢ D = the weak-+-closure of D. This implies
existence of F' in (A*, weak-+-topology)* with

F@)>sup{[F(p)|: pe D} .
Since F' is given by evaluation at some ac A, we get
¥(a) > sup {| p(a)|: p € D} = sup {|P(a)|: p € D} .
This evidently contradicts (3).
2—1: Let s = @ in 7. Choose ¢p,€ A* with ||®,|]| =1 and
@o(ay) = |l a,]]l. By (2) there is Po — Po (weak ) with ||@,|| <1 and

Poe (A4, 77)*. Then [polas)| = [P, |l [[as ]| = |l as || and @y(as) — Po(a0).
Therefore | P,(a,)| = sup; | Po(as) | = sups|las||. It follows that

laoll = g’o(ao) = lim, (pp(ao) =< sup; || Qs [,

and this is equivalent to (1).
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COROLLARY. Let z, belong to a plane domain and let A be the space
of functions continuous on the closure of the domain and analytic in
the interior, || || =sup|f|. Then every @e A* is the weak-=-limit
of functions ¥ of norm < ||@ || of the form Y (f) = e €. F 9 (2)).

THEOREM 2. If A s reflexive, them Fatouw's lemma holds for A
relative to any .

Proof. Let a;—a, in .. We need to show that ||| < sup, [|a, ||.
If the sup is o, we are done. Let the sup be K < . Since A is
reflexive, the ball of radius K in A is compact in the weak topology
induced by A* and hence is compact in the topology induced by
(4, 77 )* < A*. This means that a, exists in A with ||a,| = K and
a subnet exists with @(a,(ﬁ))—;go(al) for every e (4, g7 )*. Since
Ui 5 G0 DT P(0r5) 5 Pla) for every e (4, 77)*. This implies
that a, = a,, since & is locally convex and Hausdorff, and we are
done.

In a similar manner we obtain the following.

THEOREM 3. If A 1is the dual of a normed linear space and 7
is comparable to the weak-*-topology on A, then Fatow’s lemma holds

for A relative to 7.

THEOREM 4. Let A be any normed linear space which is mnot
reflevive. Then there is a locally convex Hausdorff topology .7~ on
A, weaker than the norm topology, so that Fatow’s lemma fails for A
relative to 7.

Proof. Let pe A*, @ =0, and put B=kerp. B is a closed
subspace of 4 and A4 is isomorphic with B& C; hence, B is not
reflexive. This means that when we view A & A** in the natural
way, B is not closed in the A*-topology. We can choose a;<€ B and
aec A**-B so that ||a;|] =1 and a;—a in the topology induced by
A*. Since ® = 0 on B, it follows that ®(a) = 0, and since a < B we
see that a ¢ A.

Let A’ be the span of B and a. For any a,€ A — B, the map-
ping between A’ and A given by b + \a = b + \a, is a vector space
isomorphism which is bicontinuous in the norm. Use this mapping to
transfer the A*-induced topology of A’ over onto A, where we obtain
a locally convex Hausdorff topology .7~ weaker than the norm to-
pology. Since a; — a, in .7, the proof is completed by selecting a, to
have norm 2, for example.
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REMARK. By a slight modification of the method of proof one
can obtain .7~ so that each element of a sequence a,, {|a,| = n, will
be the .7 -limit of elements of norm < 1. Then it will be impossible
to give A an equivalent norm which accommodates .Z~ in Fatou’s
lemma.

The failure of Fatou’s lemma for an abstract linear space is not
surprising. However, it is somewhat unexpected for A a subalgebra
of C(X) when &~ is uniform convergence on X. Recall that any
semi-simple commutative Banach algebra A may be regarded, via the
Gelfand transform, as a subalgebra of C(4), 4 the maximal ideal space
of 4, and || f|| = sup,|f].

THEOREM 5. There exists a semi-simple commutative Banach
algebra A with elements f, f. satisfying ||f.ll=<1, ||f.]|>1, and
fo—f untformly on 4. That ts, Fatou’s lemma fails for A relative
to the topology of uniform convergence on its maximal ideal space.

Proof. First consider the Banach algebra B of all sequences © =
(2, %, +++) such that |||z]|]] = 2 2% |x,| < . All algebraic operations
on B are defined coordinate-wise. As a Banach space B is isometrical-
ly isomorphic to I'. We can compute the maximal ideal space of B
as follows. Let hj(x) = x;. These homomorphisms show that B is
semi-simple. To see that these are all the homomorphisms of B, let
h: B— C and look at k(e;), where ¢; = (+-+,0,1,0, --+) with the «“1”
in the j* place. If & = 0, then h(e;) # 0 for some j, since linear
combinations of the e; are dense. Applying % to the equation e,e; = 6;;
yields Z(e;) =1 and h{e;) =0 for j + j,. Then the equation e; (x-%; ¢;)=0
leads to Ai(x) = x; and h = h;,.

Now we obtain A as the algebra of B together with a new norm
I| Il, equivalent to ||| |||. Of course, A will be semi-simple and have
the same maximal ideal space. To construct the new norm, let
C={xeB: |z ]=<1/4 and 372" |2,] =<1} and let D = the convex
hull of {¢"(e,/2 + 4¢,/2%): all real 4, all k= 4}. Both C and D are
convex and circled (stable under multiplication by scalars of absolute
value < 1). Put U = the convex hull of C U D and p = the support
functional of U: p(x) = inf{r:xecrU} = 1/sup {r:rze U}.

Observe that |||z]]| = 1=1/22eC= p(x) < 2 and
p() = 1= (1-¢)x = ¢ + (I-N)d = (L-¢) ||| z ||| = max ([|¢]ll, /|| d]l})
= max <ll, 5) =5.
2
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Since U is convex, circled, and absorbing, p defines a new norm
lzi] = p(x) on B which we have seen is equivalent with the norm
(it

To show that p is a Banach algebra norm, it is sufficient to show
uw' e U for any u, w' € U. Since % (resp. ¥') is a convex combination
of ¢, d (resp. ¢, d'), uu’ is a convex combination of c¢c¢’, ¢d’, ¢'d, and
dd’. The first three clearly belong to C; furthermore, dd eC
since the definition of D requires %k = 4. This proves p is sub-
multiplicative.

Now we estimate p{e)). Suppose re,e U; then re, = x¢ + (1-\)d.
Apply the linear functional L(z) = >3 2*x, to this equation and get
0 = 2L(¢) + I-x) L(d). Therefore, (1-N)|L(d)| < N|L(c)| <\, since
| L(c)| £1. L(d) = 8d, for all d, since this is true for the generators
of D. Hence, (1-A\)|d, | </8  Looking at the first coordinate of
re, = ¢ + (1-\)d, we see r» = ne, + (I1-\)d,. Finally, |e,| £1/4 by de-
finition and (1-V)]d, | < \/8; so < 3/8\ < 3/8. Thus ple) = 8/3.

The theorem is proved with f = ¢,/2 and f, = ¢,/2 + 4e,/2".
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