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Let f be an entire function of a single complex variable,
The exponential type of f is given by

=(f) = lim sup | F¥/(0) [ .

The Whittaker constant W is defined to be the supremum
of numbers ¢ having the following property: if «(f) < ¢ and
each of f,f’,f"”,--- has a zero in the disc|z| =1, then
f=0. The Whittaker constant is known to lie between
7259 and .7378,

The present paper provides a definition and characteri-
zation of the Whittaker constant <7, for n complex variables.
The principle result of this characterization, which involves
polynomial expansions of entire functions, is

W>sziz wiz .

To simplify notation, the presentation here is given for functions
of two variables.

An exact determination of W was obtained by M. A. Evgrafov

in 1954 [3]. The determination involves the Gonéarov polynomials,
defined recursively by

Go(z) =1,

n n—1 k
(L1)  Gol2 2y 21y = o vy Zt) = = — S B G2} 20y By + vy B)
n!  =o(n — k)l

Let
Hn = max ] Gn(oy Zoy o0y zn-1) [ ’
where the maximum is taken over all sequences {z,};Z; whose terms

lie on |z] = 1. Evgrafov proved that

W= {lim sup H;/n}"l .

n—rco

An improvement of this result and further characterizations of
W were furnished by J. D. Buckholtz [1]. Using properties of the
Goncarov polynomials, Buckholtz proved that

(1.2) (A)"Hi» < W< H™,
for n =1,2,3,..-. A consequence of these bounds is
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240 JOHN K. SHAW

(1.3) W= {hm H;/"}—l = { sup H;/n}“l .

1= 0 <o

n-s00

For an entire function f (of two complex variables) the exponential
type ©(f) is given by

7(f) = limsup | ™™ (0, 0) [+ .

We define the Whittaker constant 27~ to be the supremum of positive
numbers ¢ having the following property: if z(f) < ¢ and each of
fmm (0 <m < o, 0 <n < o) has a zero in the poly disc{(z, z):
|2,] <1, |2,] <1}, then f=0. The bound 27" = (log 2)/2 was obtained
by M. M. Dzrbasjan in 1957 [2].

The estimate furnished by Dizrbasjan depends on a system of
polynomials defined as follows. Let @ = («,,) and g = (8,,) be infinite
matrices of complex numbers. The polynomials A, .(z, 2,; @, B) are
defined by the recursion formula

Ao,o(zv Zz) =1 s

7 u8 r s . r—p rs—q
(1.4) A, (2, 25 @, B) = %1% A, (2, 205 @, RGTPE,

rlsl =040 (r— o)l — 9!

for r,$=10,1,2, .--. Note that A4, , depends only on those parameters
a,, and B,, for which p + ¢ <7 + s. Let

H,, =max|A4,,006 a8/,

where the maximum is taken over all matrices @« and S8 whose
entries lie on |z| = 1. We show that bound H,, < (2/log 2)"** holds
for all » and s. The justifies the definition

H= sup HMYr+ .

1=57,8<co

We prove the following expansion theorem.

THEOREM 1. Suppose f is entire and =(f) < 1/H. If a and 3
are wmfinite complex matrices whose entries lte in (2| < 1, then

(L5) fenz) = 3, 3 F ™ Gy B A2 75 0 )
for all (z, z,).

The following result shows that the expansion constant 1/H is
as large as possible.

THEOREM 2. There exists an entire function F, with t©(F) =
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1/H, such that each of F™™ (0 < m < «,0 Zn < ) has a zero in
the polydisc {|z,] £ 1, |z, | < 1}.

Theorem 1 and Theorem 2 will be proved in §3. We note,
however, that the following result is an easy consequence of Theorems 1
and 2.

COROLLARY 1. %" = 1/H.

Therefore, each of the numbers H. ™™ is an upper bound for
. In particular, %7 < 1V'H,, = 1/4/3. In comparing this with
the bound W > .7259, one sees that 27~ < W.

2, The Polynomials A4,,, Let f be an entire function and
let « and B be infinite complex matrices. Writing (1.4) in the form

2i%; - -~ Ap,q(zn 2 & B)0G "B’
rlsl i (r—p)l(s — g)!

we obtain the formal expansion

f(zh zz) = g si::)f'(r,s)(oy 0) Zj‘z;‘

Il
M
M

(r,s} P, q(zv 2y & B)arﬁp ;;q
f ©, 0){1)2(”12 (r — o)l (s — g)! }

A, (2 25 @, 3){; 27000 —amv é;i q)!}

(2.1)

I
M
HM3 ‘\TMS

f(?’ @ (aPQ’ BPQ)AP q(zl’ zz’ a’ 18) ’

ll
i[Me

3
]

which holds whenever the interchange in the order of summation
can be justified. In particular, (2.1) holds if f is a polynomial and
yields considerable information when f is taken to be one of the
polynomials A4, ..

LeMMA 1. If )\ is a complex number, then
(2.2) A, (N2, M2y N, AB) = ANTPAL (R R @, B)
where e denotes matrix scalar multiplication. Furthermore,

(2.3) A, (Coy Booy ¢, B) = 0 (m+mn>0).

Proof. We will prove (2.2) using mathematical induction. The
proof of (2.8) is similar. If m + » = 0, the result is clear. Suppose
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N is a positive integer and (2.2) holds for the polynomials 4,, with
p+q< N. If »r and s are nonnegative integers such that » + s = N,
then

A, (\zy, Nzo; A, AB)
2z i Z A, (N2, Moy M, MNB) (M) P (MBg)° ¢

— e
rlsl p=0as (r—p!(s— 9!

_ )V,H_z_ff_é" Y i Zsl A, (2 20 @, BT B57"
rls! i =l —q)!

= N4, (2, 25 @, B)

and this completes the proof.

Let a = (a,,)7.= be an infinite complex matrix. If j and k are
nonnegative integers, we denote by R;, the operator which transforms
« into

Rik(a) = (ap+f q+k);°,q=o .
LeMMA 2. If m+n >0, 7 < m and k < n, then

(2.4) AL (2 25 &, B) = Api w2y 25 Ri(a), Bin(B))
Proof. By direct computation, 4, (2, 2;; &, 8) = 2, — &, and

4, (2, 25 ,8) =2 — Bw>

so the result is clear if m + » = 1. Proceeding inductively, let N
be a positive integer and suppose the proposition is true for the
polynomials A4, , with p + ¢ < N. If » and s are nonnegative integers
such that » + s = N, then for j < r and k£ < s we have

AP (2, 25 @, B)
2] iz AUz, 2,5 0, BT 854"

:W—N@—@Ifﬂm (r =)l (s — q)!

P+
= T v oy A @y 2 Bi(@), Ri(8)as: "By
=il -k ik r— o) — 9!
— z{—jz;ﬂk _ TZ‘MJ S—Zk Ap q(zn %25 Rjk(a), ch(/g))apﬂ g+k P:];—(]-Hc
(r—nNl(s— k) p=0 7=0 r—g7—o!@—k—q)

Pt+e<r—j+s—k

= A, _j (2, 25 Riy(a), Ri(B) ,

and this completes the proof.

Lemma 2 and the expansion (2.1) provide a useful expression for
the polynomials A, .. Replacing « and 8 by v and 4, respectively,
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and applying (2.1) to the polynomial A, ,(z, 2; @, 5), we have

A, (2, 25 a, B)
(2.5) = 3 S AP (Vo0 8ps Ay B) A o(2sr 23 Y, 0)

1101—

Zn Z Ap q(zu a5 ’Y’ 5)A r—D, s—a(’ymv 511119 qu(a)! ﬂq(ﬁ))

H

If each of v and § is the zero matrix, it is easy to see that

K3

Azuq(zn R 7y 5) = py qy

In this case (2.5) yields

2.6) ALz f) =3 zAr_,, 0, 03 Ryn(@), Bl “2 .

p=0 ¢g=

Let m and » be integers such that 0 < m=7», 0<% <s, and
m+ n > 0. In (2.5) choose
0, if p=mand g=n
Tra = a,,, otherwise

and
5 ;O,ifpz.mandqgn
" " |8, otherwise .

In view of (2.3) we have

Ar,s(zly zz; ay B)
= pZ Z Ap q(zn 257, 0)A,, s——q(Os 0; qu(a), R:DQ(B)) .

=m qg=n
More generally, we define the operator P;, as follows. If j + k>0,
then P;(«a) is the matrix (a,,), where

@.7)

0,if p=jand gq=k

Apy = .
" |a,, otherwise .

Then (2.7) becomes
Ar s(zla 2y &, B)
- Z EAP Q(zly zza m'n(a)! mn(ig))AT—p s——q(o 0 qu(a)y PQ(IB)) .

p=m q=n

2.8)

Equation (2.8) may be regarded as a separation of variables formula,
in the following sense. If p = m and ¢ = n, then R, (a) depends
on the parameters «;,, where 7 = m and k = m, and P,,(a) depends
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on the parameters a;,, where 7 < m or k < n. The usefulness of (2.8)
is seen in the next lemma.

LEMMA 3. If 0<m=<r and 0 < n <s, then

(2'9) H7',s g Hm,nHr—m,s—n .

Proof. If m + n = 0, the result is trivial. Suppose m + n > 0
and choose matrices « and B, whose entries lie on |z!| = 1, such that

and
Hr—m,s——n - ]Ar—m,s—%(or 0; Rm%(a)y Rm%(B)) .

For each complex number ), define the matrices v = v(») and ¢ = o()\)
by

(@, if p=m and ¢ =n
Tpg = .
" [Nty otherwise

and

(Bp/v 1f P 2 m and q Z n

—_

Opq'*"

MG, Otherwise .
By (2.8) and (2.2),

4,0, 0; v, 0)
20 A0, 05 P(7), Pri(0)Arpsmy(0, 05 Byy(7), Byy(0))

p=m g=n

= X N4, (0, 05 Pl@), Prn(8) Ay aeg(0, 05 Ryy(@), Byol0))

p=moqg=n

= A" »k-nQ(k) ’

where Q(\} is a polynomial in N. Since

H.,=max|A,,(0,0;v 0| = max Q) | = | Q(0) |

141=1 12]

and

Q) | = 4,40, 05 Pu(@), Prao@)) | | Arss=a(0, 05 Bo(@), Bo(B)) |
= HMyW‘HT—MyS—n b

we have

H’f;S 2 Hm,nHr—-m,s—n .
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LEMMA 4. There is an infinite subsequence S = {(m;, n;): j =
1,2, 8, -} such that

(i) H = lim B
and
(ii) Hlitnd = Hyl+?

Sor all » and q such that » + q < m; + n,.

Proof. If there is a pair (r,s) such that H}!"*® = H, then
(2.9) implies

H= HPi = (Hi )W = Hiv+ = H

for 7 =1,2,8, ... In this case we take S = {(jr,79):7=1,2,8, ---}.
Suppose, on the other hand, that H > HY:*® for all » and s.
For each positive integer k, let

— /¢
T, = max H)/@*0 |
pt+e=k

Then T, < Hl1 <k < o) and supcice T, = H. We can therefore
find a subsequence {T,cj}‘;‘;1 with the properties that

lim T, = H

J—rc0

and

for n < k;. For each j, choose integers m; and =; such that
m;+n; =k; and T, = H,[ "7, and let S = {(m;, ny): j=1,2,3, ---}.
This completes the proof of the lemma.

COROLLARY 2. H = limsup HY&+ .

m-+n—oo

LemMMA 5. For each pair of nonnegative integers (m, n) we have

(2.10) H, ., < (2/log 2™+ .

Proof. The result is trivial if m + n = 0. Let N be a positive
integer and suppose (2.10) holds whenever m + n < N. Let r and s
be nonnegative integers such that » + s = N, The defining relations
(1.4) imply
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H . < Z H,, RSN H'r:—-]'.s—k
+=o =+0 r — )' (S - q)' Jg:fkk;oo _7! k!
- ¥ & (2/log 2)mite*
TRR e
'*M%Wﬁggm%%?”—ﬁ

el 8 2 (log 2)/2y
< (2/log 2) {zz; 5, LoD 1}

= (2/log 2)7+*{e®e? 2 — 1} = (2/log 2)™** .

COROLLARY 3. H < (2/log 2).

Note that this result, together with Corollary 1, implies DzZrbasjan’s
estimate %7 = (log 2)/2.

3. Main Results. Let

M, 2) = 3,3, 1 24
p=0 ¢= q P! (]!

o
=
Q

Note that M(z, 2;) is an entire function of exponential type 1 or
less. Suppose a and B have entries lying in |2| < 1. By (2.6),

A, (2, 2, B) = ZZAmwmommxm@W“

p=0 ¢=

Since
| Ar—-p,s—q(oy‘ 0; qu(a), RPQ(B)) l = Hr—p s—gq = /Hp g

it follows that the coefficients of A,, are bounded by the respective
coefficients of H, M(z, #,);i.e., A,, is majorized by H, Mz, 2z,). In
particular,

(3.1) | A, (2 2, B) | = H, JM(|2.], [2]) -

We are now ready to prove Theorem 1.

Suppose f is an entire function, with z(f) < 1/H, and suppose «
and @ are matrices whose entries lie in |z| < 1. In order to justify
the expansion (2.1) we show that the series

3.2) i i [ f2(0, 0) | Z 2 | Ap.q(21, 205 2, B) |
s =i = pl(s — g

is convergent. Equation (3.1) implies
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| Ap (2 2, B) | = Hy M| 2.0, [2.]) = H, M{| 2.0, |2 )/ H,p oy 5

therefore

|4, (2 255, B) |
DI T
1
< H Mz 5) 58—t
< HM(z), %)M .

The series (3.2) is therefore convergent provided that
(3.3) 2 25170, 0 H,

converges. Choose ¢ > 0 such that z(f) + ¢ < 1/H and let N be a
positive integer such that » 4+ s = N implies

£, 017 < o(f) + ¢ -
Then

2 310,01 = 3 3 [HES) + 9] .

Let o= H(z(f) +¢) and K=3>23,.,x|f"70,0)]|H,, Then (3.3)
is less than

1

I
7=0 5=0 (1 — p)*

and the convergence of (3.2) follows.
Proof of Theorem 2. Let S ={(m;,n;):5=1,2,8,.--} be an
infinite sequence such that

— llm Hl/(m +nj

j—ro0

and
Hﬁl;ﬁ§.+nf) 2 Héfépﬂ)
for all p and ¢ such that p + ¢ < m; + n;. For each (r,s)e S, let

a = a(r,s) and 8 = B(r, s) be matrices with entries on |z| =1 such
that

IAr,s(Oy 07 «a, ,8) I = H
Let



248 JOHN K. SHAW

P (zl zz) — Ar,s<z1y 22; ay ,8)
e 4,.0,0;a, B)

and

z Hll(r+s) z Hl/(r+s)
Qr,s(zl’ zﬁ’.) = -Pr,s< Lt i .

H '~ H
Then Q,.,(0, 0) = P, (0, 0) = 1, and

(3.4) a( T Hf;fs)) =0 G<rnk<s,

Moreover, (2.6) implies

=3 % A0, 05 Byl@), By (Q)H " 202
Ul 2 = 2, 2 A, (0, 0; a, g H?* 2lq!

and
A, pe—g(0, 0; B, (), R, (B)H® 0 r+s)
A"')S(Oi 0; ay B)Hp—i—q

(p+q)[(r+s) (r—p+s—q)/{rts) (p+q) | (r+s)
H,_,, H® < Hiorr Hrro!l 1

= = ’
H, H" H, Hr+ Hv+

IA

since (r, s)€ S. Therefore @, is majorized by

© 1 z{;zg
21y Ry) = ’
@( 1y Z) ;} = HP-HI p! q! ’

@(2, 2,) is an entire function of exponential type 1/H. The sequence
{Qn;.n;} is therefore uniformly bounded on compact sets. Extract a
uniformly convergent subsequence from {Qmj,,,j} and let F denote
the limit function. Then F' is entire, F(0,0) =1, and z(F) < 1/H.
Since F'® is the uniform limit of a subsequence of {@;:" }, then
(8.4) implies that F'Y%® has a zero in {{2,| =1, |#,| =1}. The expan-
sion (1.5) implies that F' has exponential type exactly 1/H, and this
completes the proof.

4, The Whittaker Constants W and 9#. We have already
seen that %7~ < W. The following result provides a precise relation-
ship between %7~ and W, and a determination of W different from
[3] and [1].

THEOREM 3. lim sup HY\™ = 1/% ,

m—+n—oo

lim inf HY™+ = 1/W .

m-+n—oe
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Proof. The first equation is a consequence of Corollary 1 and
Corollary 2. To prove the second, we require the use of the Gonéarov
polynomials G,(z; 2, +++, 2, and the sequence

H, = max|G,(0; 2y, «++, Z,_) | -

If m is a positive integer, the defining relation (1.4) implies

(.1) Ano(0, 05, ) = — 3, Apa0 Gt Bl
p=0 (m - p)'

In comparing (4.1) with (1.1), one sees that
A o(0, 05 @, B) = G(0; QXooy Qg = * 2y Xy o) -

It follows that H,,= H, and, similarly, H,, = H,. By Lemma 3
and (1.2), we have
H;L/(nm-m) g (Hm,OH),n)Il(m+n) — (HmHn)1/(m+m

>< .16 >1l(m+n) _ (.16)1/(m+m
W W

Therefore

liminf HY™" = 1/W .

Mm-+n—co
In the other direction,

lim inf HY 7 < lim inf /9 = lim Hi™ = 1/W
m—+n—roo m+0—oc0 m—r00
and this completes the proof.
Using (2.10) and the estimate W < .7378, one easily obtains an
interesting bound on 9. For all r and s, we have

H,, < (2/log 2)* < < 2 .71378 )’“ < ( 2.13 >r+s

log2 W w
and therefore

w>w = W_.
2.13
Some remarks should be made relative to stating the above
results in terms of k& complex variables, ¥ >2. For 7=1,2, .-, k,
let a¥ = (a),,...,,,) denote a k-parameter sequence of complex numbers.
The recursion relation corresponding to (1.4) is

Ao,o,---o(zn Roy o0y zk) =1

and
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Anlmz,--'mk(zly Ry vty Zk)
ny nk

R eee 20k Z Z
AR p1=0 P=0

App-",pk(zu M) zk)[a(pll),"-ypk]nrpl ce [ag;),.“,pk]”k—'l’k

: s — Pl ~++ (15 — pp)!

where p, + «+0 + D < Ny A+ 00+ Ny
The numbers H,,...,,, are also defined in the obvious way and
we have

Hypoo = Hyoon H,

Ny—My =, np—mp I

Nysctey NL10,00e, 0= nysccem] *

The definition of <77, the Whittaker constant in % complex variables,
is analogous to the definition of 27 in §1. Apart from notational
difficulties, it is a direct extension of the above results to see that

lim sup H,/mh o = 1/ 97,
and

lim inf H, /"m0 = 1/W .
If1 <1<k we also have

lim sup H,/"5 0800 = 1/ 977
and

lim inf H,/f0my = 1YW,
and it follows that %7 = #, =2 .= #, = ---.
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