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A geodesically convex space is a metric space in which
each two points can be connected by a unique segment (a
path of minimal length). An affine transformation between
two geodesically convex spaces is a map which takes segments
into segments, It is shown that, if the domain is complete,
a pointwise-bounded family of continuous affine transforma-
tions is uniformly bounded. Under a mild additional hypo-
thesis, the following stronger theorem holds: if

7 ={T.,|Ac 4}

is a pointwise-bounded family of affine transformatons and T,
is continuous on a closed geodesically convex S, with

NsS-+*g,

Adea

then 3ay, ---, @, such that 7~ is uniformly bounded on
N S -
k=1

Let (X, d), (Y, d') be metric spaces, and & = {T,|aec A} a collec-
tion of maps from X to Y. We say & is pointwise-bounded if, for
fixed z, ye X, sup{d'(T.x, T.y)|ae A} is finite. If 2,e SE X, we say
& is uniformly bounded on S if sup{d'(T.zx, T., x|z S, ac A} is
finite. A uniform boundedness theorem is one in which uniform bou-
ndedness (for some family &) is deduced from pointwise-boundedness.

Let v:]0, 1] — X be continuous, 0 = ¢, < --- < ¢, =1 a partition
P of [0, 1], define < (v, P) = > 1. d(v(t:), 7(t,—y)), and define ~(v) to be
the supremum over all partitions P of the ~(v, P). For 2z, yeX,
define d,(x, y) = inf{#(v)|v: [0, 1] — X, v(0) = x, v(1) = y}; this is the
geodesic or intrinsic distance between z and y. d, is a generalized
metric, and v is said to be a segment from z to y if

7(0) =z, v1) =y,
and /(7)) = d(z, y) < .

DEFINITION 1. X is said to be geodesically convex if for any
z,y in X there is a unique segment from x to y. We denote by
O,(x,y,t) the intrinsic parametrization of this segment (if 0 < ¢ <
s<1,d,(0,(x,y,t), 0,x,y,s) = (s — t)d,(x, y); Tis said to be an affine
map between geodesically convex spaces if T(@,(x, y, t)) = @,(Tx, Ty, t).

A term often used for a geodesically convex space is a space with
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unique segments. Throughout this paper we assume d = d,.
Our first theorem is a generalization to geodesically convex spaces
of the classical Banach-Steinhaus Theorem.

THEOREM 1. Let (X, d) be a geodesically convex complete metric
space and let (Y, d’) be geodesically convexr. Let & = {T,|ae A} bea
pointwise-bounded family of geodesically affine maps from X to Y,
each of which is continuous. Then for each x,€ X,

sup {d'(Tox, Totro) e A, d(x, ) < 1}

18 fintte.
We shall need the following lemma.

LemMMA 1. For each ac A, z,€ X and p > 0,
r(@, 2, p) = sup {d' (T2, T.2,) |d(@, 2,) = p}

18 finite.

Proof. By continuity of T, at z, 36 > 0 such that
(@, 20) < 0=d(Tox, Tazp) < 1;

we can clearly assume 6 < p. If € X, d(z, z,) < p, letz = @,(2,, 2, 6/2p),
then d(z,, 2) = 6/2pd(z,, x) < 0, so d'(T,z,, T.?) < 1l. But

To(®@y(20, @, 0/2p)) = @y(Tu2o, T, 6/2p)
and so d'(T,z,, Ta2) = 0/2pd' (Ty2o, Tox) < 1, so d'(T,z,, Twx) < 2p/o.

For purposes of simplicity, we prove the following lemma.

LEMMA 2. Assume the conclusion of the theorem 1s false. Let
M>0%,+,2,€X and T, ---, T, € F be given, with d(x, x,) <
1k £n). Then 3x,,, € X, Tor € F with d(x,, ,.,) <1, d(x,, £,.,) <
12"+ d'(Tyy Znrry, Thiio) > M, and

A (Tyny Tiins,) < 1/277

for 1<k <.

Proof. For ze X, let S(x) = sup {d'(T.x, T,x,) | A}). Let
a = 1/3 min (anh—l/"(ly Loy 2)_1’ M) 2—-1;—1,},.(%’ Ly 2)_1, 2—~n-1’ 1-— d(xm xo)) )

then a > 0. If the theorem is false, then for any K > 0 there is a
z€ X with d(z,, 2) < 1land a Te & with K < d'(Tx,, Tz), consequently
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K < d'(Tw,, Tz) < d'(Txy, Tx,) + d'(Tx,, Tz) < S(x,) + d'(Tx,, T?).
This means that we can always find a z¢ X and Te. & with
(2o, 2) < 1

and d'(Tx,, Tz) arbitrarily large. Having defined a, choose ye X,
T(=T,.)e.7 with d(y, =) <1, ad(Tx,, Ty) — S(x,) > M, and let
Tper = DO (2, ¥, ). Then d(x,, ,.) = ad(x,, y) =27 Forl <k < n,
we have
d’(Tkxm Tkxm‘rl) - d'(Tk@g(xm yy O)y Tk(pg<x’m yy a))
= d’((pg(Tkxm Tk?/’ 0)! (pg(Tkxm Tky! a))
= ad(Tw,, Ty = ar(k, ©,, 2) <277,

We also have

A(@oy Xpry) = Ao, ) + X0y @)
< d(w, ©,) + d@,(x., 3, 0), D, (., v, @)
= d(X, T,) + ad(z,, ¥) < d(z,, x,) + 2
< d(xy, x,) + 1 — d(x,, z,)
=1.
Finally,

ad (Tx,, Ty) = d'(Tx,, Tx,.,)

< d'(Tx,, Txy) + d(Txg, Te,)

< S(w,) + d'(Tx,, T, = d'(Tx,, T,.)
= ad(Tx,, Ty) — S(x,) > M,

completing the proof.

We return to the proof of the theorem. Assume the theorem is
false. Then 3x,¢ X, T, ¢ &% with

A(xy, ) < 1, d' (T, Ty)) > 2.
Having chosen «,, ++-,2,¢ X, T, -+, T, e & with
d(.’/l}o, xk) < 1(1 g k g 7’1/) ’

by Lemma 2 choose %,., € X, T,., € .7 with d(z,, x,+,) <1, d(x,, T,:) <
27 A (T oy Trospr) >0+ 2 and d' (T2, Tips) <2 forl <k < n.
Since d(w,, ©,.,) < 27!, the sequence {z,|n =1,2, ...} is Cauchy
(n < m=d(x,, 2,) < D,r=:27%"); by completeness x, —2e€ X. By con-
tinuity of T, we have lim,_.d(T,x, T,x,.) = 0, so
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d'(T,x, T, < d (T, T,x) + d(Tx, Tx,) <+«
< ATy, To) + 3 d(Totey Totens) + &' (Toty Tyt ;
k=m

letting m — <o we obtain
A (T, Tyr,) < Ty, Tot) + S, d'(Torsy Tottsy)
k=mn
< ATy, Towt) + S, 2751 < d'(Tuo, Tot) + 1,
k=mn

Since k g n = d’(Tnxky Tn'xk*\«l) < 2_k_1. SO
o+ 1< (T T < d(Toy, To) + 1= d Ty, T) >

contradicting the pointwise-boundedness of .

We now make an additional hypothesis, which will enable us to
prove a stronger version of this theorem. Let @ = @,.
DEFINITION 2. If 0 < @ < 1, define
M(o) = sup {d(@(z, ¥, ), @(x, 2, )/d(y, 2)|®, ¥, 2€ X, ¥y # 2},
and define M'(«) similarly in Y. Note that, if M(a) < o, then
%, Y, 2€ X =d@(z, y, a), Oz, z, ®)) < M{a)d(y, z) .

For the remainder of this paper we shall make the following ass-
umption: Jae€ (0, 1) such that both M(a) and M’'(a) are finite. This
a will be fixed from now on.

DEFINITION 3. Let {2,/ =1,2, .-..} € X, and let 2,€ X. Define
2" = O(x,, ©, ), and for 2 < k < n define z{") = O (xpe, s, 217, ). Now
define y, = zi® for n = 1,2, «--.

If X were a Banach space and x, = 0, then we would have

n

Yo = 20 (1 — ajf, .

ket

In general, however, we have y, = @(x,, @(x,, -+, D(x,, 2y ), -+, Q),
which will henceforth be abbreviated @(x,, ---, @(x,, 2, @), +++, Q).

LEMMA 3. Given
{:“;nln: 1! 2, "'}gxi

x, € X, define {y,|m =1,2, -} as in Definition 3. Then



TWO UNIFORM BOUNDEDNESS THEOREMS 255

Yy Ynr) = M@)* (1 — @)d(@4, %)

if n= 2,

Proof. Clearly, we have

Yy Yn—s)

D@y, » ooy DXy Toy &)y o0, Q) D(@y, o+ vy DLy, Tpy @), oo, X))

M(a)d(@(xy, « -+, O(x,, Toy @)y =+ v, @), D(Xgy ==+, D(Xy_y, Toy ), +++, A))
« < M(a)"*d(D(%yy DXy Toy @), @), D(Tpyy Ty X))

M{a)y"'d(@(z,, 0, @), %)

=1 - a)Ma)*'d(x,, x,) .

A A A

LeEmMMA 4. Let S be a convex subset of X, »p >0, and let x,€ S,
F ={T|ned} a collection of affine functions on X. If & 1s not
wuniformly bounded on S N S(x,, p), then given M >0, ¢ >0, we can
Jfind a Te # and an xe SN S, p) such that d(x, x) < e and

d(Tx, Twy) > M .

Proof. We can assume without loss of generality that ¢ < p.
Choose Te &, ye SN S(x, p) such that d'(Ty, Tx,) > Mpje. Let & =
O(xy, 9, €/p); ©€ S by the convexity of S. Now

d(x! xo) = (a/p)d(yy 950) < € ’
and

d'(Txz, Txy) = d'(TO(w, Y, &/D), T)
= d"(@(Tx,, Ty, €/p), Tx,)
= ¢/pd'(Tx, Ty) > M,

completing the proof.
The next lemma will be critical in proving the desired theorem.

LEemMA 5. Let {S,|n=1,2,---} be a collection of closed convex
subsets of X, and let {T,in =1,2, ---} be a collection of affine func-
tions on X such that T,|S, is continuous for n = 1,2,, «-.. Assume
that @, e Nr-. Sy for n=1,2, «--, and that d(z,, x,) s suffictently
small to make {y,|n = 1,2, ---} (as defined in Definition 2) a Cauchy
sequence (we do this by requiring >, M{ay"'d(x,, x,) to converge).
By completeness of X, let y = lim, .y,. Then for each integer N,
Tyy = im, . Ty¥n-
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Proof. Observe first that, if lim,..w, = % (in either X or Y),
then lim, . @(v, %, @) = @(v, u, @), as

d@(v, u,, a), O(v, u, a)) < M@)d(u,, u) —0 .

If n >N, let 2, = @@yyy, »++, P&y, %, @), +++, ). As in Lemma
1, we can show that d(z,, z._.) =< (1 — @)M(a)"~"*d(x,, x,), and since
S M(e)"d(x,, ©,) converges, we can define z = lim,_..z,. Note that
n>N=2,€8y, a8 Zyiy, +++, 2, €8Sy and S, is convex. Since S; is
closed, z¢S,, and so T,z,— Tyz by the continuity of T,|Sy. If
n > N, we have

Tty = Ty@(x,, +++, DXy, 24y Q) *++, Q)
= O(Tyw,, e+, O(Tyxy, TRy @), «++, @),

and so

lim Ty, = @(Tle, coo, im O(T ey, Ty @)y + ooy a>

n—oa 00

= @(TNxI, ceu, (D(TNxN, lim Tyz., a), ces, a>

= @(Tley tt @(TNxNa TNZ, C(), <ty a) .

Since y, = O(x,, -+, O(Ty, 2, &), +-+, &) and

y = limy, = @(xl, oo, lim @(xy, 2, a))

n—0 n-—00

= (-D(xly ] @(xNv 2 a)v tt a) ’

we see that Ty = O(Tyx, +--, O(Tway, Tz, @), +--, &) = lim,_.. Ty¥,.

It is now necessary to perform some calculations. Assume
{Ealn=1,2---} X,
x,€ X, and {y,|n = 1,2, ---} is defined as in Definition 3. Now define
B = DXy »o+y DXy, Ty Q) o2+, @) = Oy 242y, @)

(for the purpose of these calculations, » will be assumed to be fixed)
for k<n—1, 2z, =0, 2, ®). We now have d(x, O, %, @) =
A2, 2,) < A, Y) + D02t (2 #iyy), as clearly z, = y,. Observe fur-
ther that

A(Zpy 21r1) = AP(0ry Zpps, ), Zprr)
= (1 - a)d(x, 211
= (1 — a)[d(@s, %) + d(@o, 2411)]

for k< n — 1.
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We now prove some computational lemmas.

LeMmA 6. If k<n — 2,
d(w,, Rppr) = 1 + a)d(@,ey, ) + ad(xy, 244s) -
Proof.
Ao, Zr1) = ARpiyy Tprr) + A@pry, o)
= AP (Xps1y Brray @)y Tpr) + A(Xprs, T)
= ad(Tp11y Zprs) + A Bpsyy To)
= afd(@psry o) + D@y Zpr)] + A(@psy, To)
= (1 + a)d(@sy, %) + ad(@o, 2prs) «
LemMMA 7. If k< n — 2, then
n—k—2
Ao, 21e) = (1 + @) Zf) A d(@y, Cpra) + L — @) 'd(@o, @) -

Proof. If j <n — k — 2, we shall verify the inequality
(@, 24e) = (1 + @) Z(‘) Ad(Toy Tprris) + ATA(Doy Zypsva) -

If 5 = 0, this inequality is the conclusion of Lemma 4. Inductively,
assume it is true for 5. By Lemma 6, we have

At d( @y Zyjre) = T+ (@0, Tpiire) + (@0, Zisirs)] 3
adding this term to the j* inequality yields the inequality for j 4 1.
When j = n — k — 2, we therefore have

n—k—2 .
Aoy 2is) = 35 (1 + Q@A Tarrs) + @7 2)
Fi

=1+ @)Y @da, v + 1 — @@ d(@, 7,) -

A consequence of Lemma 7 and a previous observation is that
U2 2e1) = (1 — )[d(@y, @) + Ao, 2441)]
< (1= (e, 2) + 1+ @)Y, @d(o, )
+ (1 — a)a~"d(x,, x,)] .

Now let 1<k <mn—1. We make the following definition for
E<g <.
pP =1—a if j =k
=1 — a®)as* iftk<j<mn
= (1 — a)r—*? ifj=mn.
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Then d(z;, z.1,) = 25— p15d(2), @), and so
(1 - a)d(x(!y xn) = d(x(ly Q(xny Q'/'o, CK))
< d@o v) + 3 Az, 21
= do, v) + 3 (3 0 dles, @)
k=1 i=k
n—1 k 3 n—1 .
= da v) + 3 (2 0 ) @) + 5w d(e, @) -
Ti1<k<n—1, let B, =X}, ¢, and let
o= S —(L—a).
Obviously B, >0 if 1 <k <n — 1, and also
Sw=0-arS e

—1—ar g o
=1 - o[l - a)/(1 - a)]
=l-agl-a)<l—-a,

and so B, < 0. Since this calculation has been performed for the
integer n, we shall relabel the constants just obtained g™, ..., g.
The last inequality proved shows that

0 = d(xo, ¥a) + ké B d (@, x) ,
which implies that d(w, ¥.) = (—B")d(x,, ©.) — D2t BEVA(T,, ). A
reexamination of the work done subsequent to Lemma 3 shows that,
if T: X— Y is affine, then
d(Tw, Ty) = (— BV (T, Tiy) — i B (T, Tay)

We have therefore proved the following:

LEmMMA 8. Let 7 = {T)|ne 4} be a pointwise-bounded family of
affine functions from X into Y, and let {x,|n =1, 2, ---} be given in
X, {yuln=1,2, ---} as in Definition 2. If

S(x) = sup d'(Tx, Tw)| Te 7},
then d'(Tx,, Ty,) = (— L) (Tw,y Tw,) — S0t BVS(x,) for any Te F.

Proof. Immediate from previous work and the fact that
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d’(T.?CO, Txk) = S(xk)
for all Te &7

We come now to the desired theorem.

THEOREM 2. Let (X, d), (Y, d) be spaces with unique segments,
let X be complete, and assume there is an a< (0, 1) such that M(c),
M'(a) are finite. Let & = {T,|ne€ A} be a pointwise-bounded family of
affine maps from X into Y, and let S, be a closed convex subset of X
such that MNiesS; = @ and T,|S; is continuous for each neA. Then
ANy, -er, Ny € 4 such that F s uniformly bounded on (i-, S,,.

Proof. Let x,€MNiesS: » >0, and assume that & is not uni-
formly bounded on the intersection of S(x,, p) and any finite intersec-
tion of the {S;|ned}. We assert that we can prove the following:
given x;, +++, 2, X, T, ++-, T, € & with T,|S, continuous, 1 <k <n
and z,e NS, for 2k <mn, and given M >0, let y, ---,y, be
derived from g, ---, %, as in Definition 3. Then we can find z,,, €
N, S, and T,.,c.# such that, if we let v,., be derived from
2y, *°+, L,ey as in Definition 3,

d(xm yn+1) < 29, d(ym yn+1) < 1/27”-1! d,(TwHyn-Hy Tn+1x0) > M,
and d' (T Ti,r) < 1/2% for 1 < &k < n.
Since w, € Mi-, Sy, choose §, (1 <k < n) such that ze S,
d(@, x) < 0, = d'(Ty, Thwo) < /2271 — a)M' ()" ;

then if we define y = @(x,, - - -, O, ¢z, 2, @), @), --+, &), by Lemma 3
we have xze S, d(z, x,) < 0= d' (T, Twy) < 1/2**., Now let

Y =27"min(p, dy,+++, 0. (0 — (%, ¥,))/(1 — @) M()", 1/(1 — c) M(cx)"2""") .

Finally, by Lemma 4 choose z,,,€;-, S, and T(=T,,)e.# with
(@, orr) < v and (=50 A (Ty, Twyr) > M+ Dk, BTV S(x;). Define
Ynsy = DXy, <« vy O(ysy, Ty @), -+, ). We have already observed that
12k =n=d(TW., TWe.) < 1/2¢. Now by Lemma 3
Yy Y1) = (1 — @) Ma)"d(wy, @,1,) < 1/27H
and also
A@oy Yntr) = A%o, Yu) + AYny Yurs)
= d(@o, ) + (1 — ) M(®)"d(@0y 1)
< d(ﬂ?o, yn) + (p - d(xOy yn))
= p .

By Lemma 8 we see that
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A (T, T) Z (—F85)0 (T, T = 33604 8(w) > M .

Construet {y,|n = 1, 2, ---} by this procedure to insure that

d(xm yn—‘;l) < D, d(?/m yn'H) < 1/2%4—1

and choose {T,|n=1,2, ---} = .7 with d(T,sYns1, Ths:%e) >n+2 and
ATy Tifur) < /2% for 1 <k < x. Now {y,|n =1, 2, -..} is Cauchy,
go let y = lim, . v,. By Lemma 5, for each integer n we have

T,y = lim Ty, ,

and so far any «# we have lim,_.d (T,y, T,¥nr) = 0. So
(T, Toy,) < d{Te, Toy) + A (T, Tot)e) =+ -

= &'(Taa, T,0) + ST Tage) + (T, T
as m-— oo we obtain

d,(TnxO; Tﬂyn) g d,(wam Tny) Jf_ Ig d,(Twyk) Tnylc—i-l)

co

< d(Tyo, Toy) + S, 2781

k=

< d,(Tnxw Tn?/) + 1 ’
since k= n=d'(T,yp, Tt < 1/287 So
s + 1 < d,(Tnx'OJ T’Iby’ﬂ) g d,(TnxO? T’n?/) + 1 = d,(Tnmov T'ny) > w ’

contradicting the pointwise-boundedness of & and completing the
proof.

In conclusion, although spaces such that M(«) is infinite for every
a e (0, 1) are highly pathological, it would be nice to know whether
or not the restriction that some M(«a) and M'(a) be finite can be
removed.
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