Pacific Journal of

Mathematics

FUNCTIONALLY COMPACT SPACES, C-COMPACT SPACES
AND MAPPINGS OF MINIMAL HAUSDORFF SPACES

STEPHEN WILLARD




PACIFIC JOURNAL OF MATHEMATICS
Vol. 38, No. 1, 1971

FUNCTIONALLY COMPACT SPACES, C-COMPACT
SPACES AND MAPPINGS OF MINIMAL
HAUSDORFF SPACES

S. W. WILLARD

Our interest in this paper is in the mapping properties
of minimal Hausdorff spaces; some of the results will provide
new characterizations of the classes of functionally compact
and C-compact spaces., Of more than secondary interest,
it may be the primary message of the paper, is the point of
view adopted (and outlined in §2) in studying the ““divisibility”’
of the highly nondivisible class of minimal Hausdorff spaces.

1. Introduction. Let X be a Hausdorff space. Then X is
absolutely closed (AC) iff whenever X is embedded in a Hausdorff space
Y, X is closed in Y. We call X minimal Hausdor (MH) iff X admits
no one-to-one continuous map to a Hausdorff space which is not a
homeomorphism. X is functionally compact (FC) iff every continuous
map on X to a Hausdorff space is a closed map. Finally, Velicko [13]
has defined a set 4 in a space X to be an H-set iff for each family
of sets open in X and covering A, there is a finite subfamily whose
closures in X cover A. Porter and Thomas 11; Thm. 2.5] have observed
that in Hausdorff spaces H-sets are closed, and Viglino [14] has defined
a Hausdorff space to be C-compact (CC) iff every closed set is an H-set.

Some of the basic results we will need concerning the classes of
spaces defined above are given in the following theorem.

THEOREM 1.1. Let X be a Hausdorff space. Then

(a) (J4) X 4s AC iff every open filter on X has a cluster
point,

(b) (4] X is MH 4ff every open filter on X with a unique
cluster point converges (necessarily to that point),

(c) ([B]) X is FC iff whenever Z is an open filter base on X
such that N{U|Ue%} = nN{U|Ue%}, then % 1is a base for the
neighborhoods of N{U|Ue %}.

(d) (15]) X s CC iff every open filter base Zz on X is a base
for the mhoods of N{U|Ue %}.

Each of the characteristic properties above can be applied to
non-Hausdorff spaces. For example, a (not necessarily Hausdorff)
space X is generalized minimal Hausdorff (GMH) iff every open filter
with a unique cluster point converges. Similar definitions can be
given for gemeralized absolutely closed (GAC), generalized functionally
compact (GFC) and generalized C-compact (GCC) spaces.
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The following theorem displays the relationships between the
properties introduced so far.

THEOREM 1.2. Compact = CC = FC = MH = AC and none of these
implications can, wn general, be reversed.

The proof, as well as the necessary counterexamples can be found
divided between [14], [5], [7], [12] and [4].

2. Mappings of minimal Hausdorff spaces. Products and
continuous images of compact spaces are compact; it has been a
continuing object of interest in investigations concerning the weaker
versions of compactness introduced above to discover the extent to
which these properties are similarly productive and divisible. It will
be convenient to introduce, at this point, the term Hausdorfi divisible,
which will designate those properties of topological spaces which are
preserved by quotient maps with Hausdorff range. Our investigation
will center on the study of Hausdorff divisibility in the class of MH
spaces.

This class is not Hausdorff divisible. In fact, the stock example
of a non-MH AC space is a perfect (= closed, continuous with compact
point-inverses) image of the stock example of a non-compact MH
space (see [3]). Whenever, as here, a class .&7 of topological spaces
is badly treated by a class & of maps, a great deal of information
can be derived by considering two related classes:

R_.(Z7): the class of spaces whose every <“-image lies in &7, and
P _(27); the class of spaces which are ¢“images of spaces from
class &

Note that these classes are, respectively, the largest class smaller
than .7 which is closed under .“maps and the smallest class larger
than .27 which is closed under ¢“-maps, assuming that the class &~
includes all identity maps. These facts make R (<?) and P ()
natural objects for study whenever the class .&7 is not itself closed
under .&~-maps.

Arhangelskii [1] specifically identified P ,(Z”) as an object of
concern, but failed to mention R _.(Z”). In this section, we will
determine R (<°) for the class .27 of MH spaces and the class &
of continuous maps whose domain and range are Hausdorff (Theorem
2.1), use this to prove a rather curious corollary (2.3) and, along the
way, provide new characterizations of the class of FC spaces (2.1).

THEOREM 2.1. The following are equivalent, for a Hausdorff
space X:
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(a) X 1s FC,

(b) every continuous map of X onto a Hausdorff space is a
quotient map,

(c) every continuous Hausdorff image of X 1s MH,

(d) every Hausdorff quotient of X 1is MH,

(e) every closed continuous Hausdorfl image of X is MH.

Proof. (a)= (b) and (c) = (d) = (e) are obvious.

(b)=1(c): Suppose X has the property of (b) and f is a
continuous map of X onto a Hausdorff space Y. If Y is not minimal
Hausdorff, let Y* be the set Y with a strictly weaker Hausdorff
topology. Then f defines a map f*: X — Y* which is continuous but
cannot be a quotient mapping, a contradiction.

(e)=(a): Suppose X is not FC. Then, by Theorem 1.1, for
some open filter base % on X, N{U|Ue%} = N{U|Ue%} = A,
while Zv is not a neighborhood base at A. Now if A4 is empty, X itself
is not MH, which is impossible. On the other hand, if A4 is nonempty,
then the quotient Z obtained from X by identifying the points of A
is Hausdorff, but not minimal Hausdorff. For it can be retopologized
as a Hausdorff space with a strictly smaller neighborhood base at A.
Since the quotient map of X onto Z is closed, we are done.

Part (b) of the last theorem makes it clear that the study of
the class of FC spaces is the study of what, at first glance, would
seem to be a wider and more natural class of spaces, i.e., those
spaces X with the property that, if f is a continuous map from X
to a Hausdorff space Y, then f is a quotient map.

Theorem 2.1 also has an obvious, but rather curious, consequence
(Theorem 2.3), for which we require the following result.

THEOREM 2.2. Let X be a topological space. If the projection
XxY— Y 1is closed for each compact Hausdorff space Y, then X is
compact.

Proof. Let n be an infinite cardinal, 2, the least ordinal of
cardinal n. According to a result of Noble [10; Thm. 2.2], if YV
contains a point y such that

(a) n is the smallest cardinal of a neighborhood base at y, and

(b) there is a family {S.|ae®,} of closed subsets of Y such
that y is in the closure of {Juco, S« but not in the closure of Uaca,Se
for any «, ¢ 2,,
then for the projection 7,: Xx Y — Y to be closed, it is necessary
that every open cover of X of cardinarity n has a subcover of
cardinality < n.

Since compact Hausdorff spaces Y can be found satisfying con-
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ditions (a) and (b) above for any infinite cardinal n (for example,
Y = the one-point compactification of £2,), we conclude that every
infinite open cover of X has a subcover of strictly smaller cardinality,
whence (easily) X is compact.

THEOREM 2.3. (a) If a class & of spaces contained in the class
of FC spaces and containing the class of compact Hausdorfl spaces is
productive, then < s the class of compact Hausdorff spaces.

(b) If a class & of spaces contained in the class of MH spaces
and containing the class of compact Hausdorff spaces is productive
and Hausdorfl divisible, then & 1is the class of compact Hausdorff
spaces.

(¢) If a noncompact space X is FC or CC, then there is a compact
Hausdorff space Y such that Xx Y is not FC.

Proof. (a) and (c¢) follow directly from Lemma 2.2; (b) follows
from 2.1 and (a).

Thus “nice” properties between compactness and the MH property
are confined to one, compactness itself. This use of Theorem 2.1 is
a good example of the utility of the concepts R_(<”) and P..(%)
for nondivisible classes.

The problem of determining P_..(.27) for the class &7 of MH spaces
and the clagss & of maps with Hausdorff range remains open. The
following is an attractive conjecture:

Congecture. A Hausdorff space X is AC iff it is the continuous
image of some MH space.

3. C-compact Spaces. By relaxing the separation axiom in 2.1
(¢), (d), and (e), one obtains a characterization of C-compact spaces
and determines R_.(Z”) for the class & of GMH spaces and the class
& of continuous maps with Hausdorff domain and 7, range. To
introduce this, we give a preliminary characterization of GCC spaces.
We will use the following terminology: an open filter base 2 on a
topological space X converges to a set A & X iff every nhood V of A
contains an element of %/, and an open filter base % meets a set
B X iff Un B+ 0 for each Ue #.

LEMMA 3.1. The following are equivalent for a space X:

(a) X 1s GCC,

(b) every closed set in X is an H-set,

(e) the continuous image of X is GCC, and

(d) if A is closed in X and Z~ 1is an open filter base which
meets A, then % has a cluster point in A.
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Proof. The proof is straightforward.

THEOREM 3.2. The following are equivalent for a Hausdorff
space X:

(a) X is C-compact,

(b) every continuous T, image of X is GMH,

(c¢) every T, quotient of X is GMH, and

(d) every closed continuwous T, image of X is GMH.

Proof. Clearly (b) implies (c) and (c) implies (d). That (a) implies
(b) follows immediately from 3.1 and 1.1. To prove (d) implies (a),
suppose X is not C-compact. Then, say, % is an open filter base in
X with C = N{U|Ue %}, while Z does not converge to C, by 3.1.
Obtain a quotient Z of X by identifying the points of C; call the
quotient map %. Then Z is T, and % is a closed continuous map of
X onto Z, but Z is not GMH. For, by an easy rearrangement, we
may assume C has no interior and UNC = @ for each Ue %'. Now
if Ue %/, then W(U) is open in Z and each nhood of A(C) = p meets
r(U), so pe h(U). Moreover, if ¢ # p in Z, then some nhood of q
fails to meet some A(U) [else h™'(g) be a point in N U which is not
in C], so NR({U) = {p}. But if V is a nhood of C in X which con-
tains no Ue %, then (V) is a nhood of p which contains no A(U).
Thus we have an open filter base {R(U)|Uec Z} in Z with a unique
cluster point » which does not converge to p. So Z is not GMH.

REFERENCES

1. Al Arhangel’skii, Mappings and spaces, Russian Math. Surveys, 21 No. 4 (1966),
115-162.

2. B. Banaschewski, Ueber Hausdorffsche-minimale Erweiterung von Raumen, Arch.
Math., 12 (1961), 355-365.

3. M. Berri, Minimal topological spaces, Trans. Amer. Math. Soc., 108 (1963), 97-105.
4. N. Bourbaki, Topologie generale, Act. Scie. Ind., 858-1142, Hermann, Paris, 1951.
5. R. F. Dickman, Jr. and A. Zame, Functionally Compact Spaces, Pacific J. Math.,
31 (1970), 303-311.

6. , Every Hausdorf space can be embedded in a Hausdorff space on which
every mapping s closed, Notices Amer. Math. Soc., 17 (1970), 466.

7. G. K. Goss, and G. A. Viglino, C-compact and functionally compact spaces, Notices
Amer. Math. Soc., 17, no. 2, (February (1970), p. 468.

8. M. Katetov, Ueber H-abgeschlossene und bikompakie Raeume, Casopis Pro. Pest.
Mat. a Fys., 69 (1940), 36-49.

9. Chen Tung Liu, Absolutely closed spaces, Trans Amer. Math. Soc., 130 (1968),
86-104.

10. N. Noble, Products with closed projections, Trans. Amer. Math. Soc., 140 (1969),
381-391.

11. J. Porter, and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans.
Amer. Math. Soc., 138 (1969), 159-170.




272 S. W. WILLARD

12. C. T. Scarborough, and A. H. Stone, Products of nearly compact spaces, Trans.
Amer. Math. Soc., 124 (1966), 131-147.

13. N. V. Velicko, H-closed topological spaces, Mat. Sb., 70 (112) (1966), 98-112 = Amer.
Math. Soc. Transl., 78 (2) (1968), 103-118.

14. Giovanni Viglino, C-compact spaces, Duke Math. J., 36 (1969), 761-764.

15, ———, Seminormal and C-compact spaces, to appear.

Received June 16, 1970 and in revised form September 29, 1970. The author was
supported by NCR Grant A-7591.

UNIVERSITY OF ALBERTA, CANADA



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California
Los Angeles, California 90007
C. R. HoBBY RICHARD ARENS
University of Washington University of California
Seattle, Washington 93105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

UNIVERSITY OF SOUTHERN CALIFORNIA

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics

Vol. 38, No. 1 March, 1971

Bruce Alan Barnes, Banach algebras which are ideals in a Banach algebra . . . .. 1
David W. Boyd, Inequalities for positive integral operators.................... 9
Lawrence Gerald Brown, Note on the open mapping theorem .................. 25
Stephen Daniel Comer, Representations by algebras of sections over Boolean

SPUACES .« o oottt e et e e 29
John R. Edwards and Stanley G. Wayment, On the nonequivalence of

conservative Hausdorff methods and Hausdorff moment sequences . .. ... .. 39
P. D. T. A. Elliott, On the limiting distribution of additive functions (mod 1).. . .. 49
Mary Rodriguez Embry, Classifying special operators by means of subsets

associated with the numerical range . ............. ... ... i, 61
Darald Joe Hartfiel, Counterexamples to a conjecture of G. N. de Oliveira . ... .. 67
C. Ward Henson, A family of countable homogeneous graphs.................. 69
Satoru Igari and Shigehiko Kuratsubo, A sufficient condition for

LP-multipliers ... ... e e 85
William A. Kirk, Fixed point theorems for nonlinear nonexpansive and

generalized cONtraction MAPPINGs . .. .....c..ouuee i i nii e, 89
Erwin Kleinfeld, A generalization of commutative and associative rings . . . .. ... 95
D. B. Lahiri, Some restricted partition functions. Congruences modulo 11 ... ... 103
T. Y. Lin, Homological algebra of stable homotopy ring mw+ of spheres.......... 117

Morris Marden, A representation for the logarithmic derivati
meromorphic function. .................c.c.oiiiiiia..

John Charles Nichols and James C. Smith, Examples concern
for metric-dependent dimension functions.............
Asit Baran Raha, On completely Hausdorf{f-completion of a c«
Hausdorffspace . ............. ..
M. Rajagopalan and Bertram Manuel Schreiber, Ergodic auto
affine transformations of locally compact groups. . .. ...
N. V. Rao and Ashoke Kumar Roy, Linear isometries of some
SPACES . oo e e e e e
William Francis Reynolds, Blocks and F-class algebras of fin
Richard Rochberg, Which linear maps of the disk algebra are
Gary Sampson, Sharp estimates of convolution transforms in
JURCHIONS oo oo e
Stephen Scheinberg, Fatou’s lemma in normed linear spaces
Ken Shaw, Whittaker constants for entire functions of several
variables ........ ... ...
James DeWitt Stein, Two uniform boundedness theorems. . . .
Li Pi Su, Homomorphisms of near-rings of continuous functia
Stephen Willard, Functionally compact spaces, C-compact sp
of minimal Hausdorff spaces.........................
James Patrick Williams, On the range of a derivation. . .. ...


http://dx.doi.org/10.2140/pjm.1971.38.1
http://dx.doi.org/10.2140/pjm.1971.38.9
http://dx.doi.org/10.2140/pjm.1971.38.25
http://dx.doi.org/10.2140/pjm.1971.38.29
http://dx.doi.org/10.2140/pjm.1971.38.29
http://dx.doi.org/10.2140/pjm.1971.38.39
http://dx.doi.org/10.2140/pjm.1971.38.39
http://dx.doi.org/10.2140/pjm.1971.38.49
http://dx.doi.org/10.2140/pjm.1971.38.61
http://dx.doi.org/10.2140/pjm.1971.38.61
http://dx.doi.org/10.2140/pjm.1971.38.67
http://dx.doi.org/10.2140/pjm.1971.38.69
http://dx.doi.org/10.2140/pjm.1971.38.85
http://dx.doi.org/10.2140/pjm.1971.38.85
http://dx.doi.org/10.2140/pjm.1971.38.89
http://dx.doi.org/10.2140/pjm.1971.38.89
http://dx.doi.org/10.2140/pjm.1971.38.95
http://dx.doi.org/10.2140/pjm.1971.38.103
http://dx.doi.org/10.2140/pjm.1971.38.117
http://dx.doi.org/10.2140/pjm.1971.38.145
http://dx.doi.org/10.2140/pjm.1971.38.145
http://dx.doi.org/10.2140/pjm.1971.38.151
http://dx.doi.org/10.2140/pjm.1971.38.151
http://dx.doi.org/10.2140/pjm.1971.38.161
http://dx.doi.org/10.2140/pjm.1971.38.161
http://dx.doi.org/10.2140/pjm.1971.38.167
http://dx.doi.org/10.2140/pjm.1971.38.167
http://dx.doi.org/10.2140/pjm.1971.38.177
http://dx.doi.org/10.2140/pjm.1971.38.177
http://dx.doi.org/10.2140/pjm.1971.38.193
http://dx.doi.org/10.2140/pjm.1971.38.207
http://dx.doi.org/10.2140/pjm.1971.38.213
http://dx.doi.org/10.2140/pjm.1971.38.213
http://dx.doi.org/10.2140/pjm.1971.38.233
http://dx.doi.org/10.2140/pjm.1971.38.239
http://dx.doi.org/10.2140/pjm.1971.38.239
http://dx.doi.org/10.2140/pjm.1971.38.251
http://dx.doi.org/10.2140/pjm.1971.38.261
http://dx.doi.org/10.2140/pjm.1971.38.273

	
	
	

