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ON THE RANGE OF A DERIVATION

J. P. WILLIAMS

A derivation on an algebra &7 is a linear transformation
d on &7 with the property o(XY)= Xo(Y) + o(X)Y for all
X, Ye ., If &% =#(5#) is the Banach algebra of all
bounded linear operators on a complex separable infinite-
dimensional Hilbert space =~ then it is known that every
derivation 6 on % is inner, that is, there is a bounded
operator A on 57 such that 6(X) = AX — XA = d4(X) for
all Xe #(5#). (See [8].) In the present note simple
necessary and sufficient conditions are obtained that (i) the
range %2 (54) be dense in the weak and ultraweak operator
topologies; (ii) the norm closure of the range contain the
ideal .”7" of compact operators on 577, (iii) the set of com-
mutators BX — XB where B belongs to the C*-.algebra
generated by A and X is arbitrary be weakly or ultraweakly
dense in <% (57°). The commutant of the range of a deriva-
tion is also computed and it is shown that the ranges of any
two nonzero derivations have nonzero intersection.

1. If A and B are bounded operators on 2# then the identities
04+ 0p = O4rp, 0405 — 0304 = 04p-ps Show that the sum and Lie product
of two (inner) derivations is a derivation. However the product 6,55
is a derivation only in the trivial cases:

THEOREM 1. Let A, Be ZF(57). The 6,05 1s a derivation if and
only if A or B is a scalar multiple of the identity operator.

Proof. Let 6 = 0,65. Then

A(XY) = 0,(05(XY)) = 0.(Xos(Y) + 85(X)Y)
= X0,05(Y)) + 0.4(X)05(Y) + 0,(05(X)Y + 65(X)o4(Y)
= Xo(Y) + 6(X)Y + 0,(X)35(Y) + 05(X)3.(Y) .

Therefore 6 is a derivation if and only if
(1) 04(X)05(Y) + 05(X)04(Y) =0
for all X, Ye.2#(5#). Replacing X by XZ in (1) we get
0 = X0,(2)0p5(Y) + 0(X)Z0x(Y) + X65(Z)0(Y) + 05(X)Z0,(Y)
so that

(2) 04(X)Z0x(Y) + 05(X)Z6,(Y) =0
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for all X,Y,Ze % (5#). Now let Z = 6,(W) in (2) and use (1) to
get

0 = 04(X)as(W)is(Y) + 0:(X)05(W)iu(Y)
(3) = — 05(X)0.(W)is(Y) + 95(X)05(W)iu(Y)
= 205(X)05(W)o4(Y) .

Finally, replacing X by XV in (3) we get

0 = X05(V)os(W)ou(Y) + 05(X) Vos(W)o(Y)

(4) = 05(X)Vo,(W)o(Y) .

Starting with (2) a similar argument gives
(4) 0 = 0.,(X) Vo (W)ox(Y) .

Suppose now that B is not a scalar multiple of the identity.
Then there is an Xe & (5#°) for which §,(X) = 0. The norm closed
linear span _# of the operators {Vo ,(X)W: V, We Z(5#)} is a non-
zero two-sided ideal in <& (5#°), hence % > 2 Hence by (4),
S65(Z)0,(Y) =0 for all Se 22 Since multiplication is continuous in
the weak operator topology and since .2 is dense in < (5#) for
this topology we conclude that

(5) 05(Z)04(Y) =0

for all Z, Ye &2 (57).
Replacing Z by XZ in (5) we get

0 = X05(2)0,(Y) + 95(X)Z0.(Y)

(6) — 5,(X)Z5,(Y)

for all X, Y, Ze #(5#). The preceding ideal argument then shows
that 6,(Y) = 0 for all Ye &Z(5#) so that A is a scalar multiple of
the identity.

A similar argument shows that (4)’ implies

(6) 04(Z)Wos(Y) =0

for all W, Y, Ze #(5#). It follows from (6)' that if A is not a
scalar multiple of the identity, then B is.

In general the range of a non-invertible linear transformation is
topologically small (first category) and has large codimension (see [5]).
It is therefore of some interest to note that the range of a derivation
is large in at least one sense, namely it must have a small commutant:
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COROLLARY 1. If Ae < (57) is not a scalar multiple of the
tdentity then <#©,) = C.

Proof. Let Be .z#(d,). Then d;(0,(X)) = 0 for all Xe <Z(57) so
that 66, = 0 is a derivation. Hence B is a scalar by the theorem.

The next result was conjectured by Joel Anderson. It too may
be interpreted as additional evidence that derivations have large
range.

CorROLLARY 2. If A and B are not scalar multiples of the
identity then #(0,) N # (05 # 0.

Proof. Suppose that #Z(@G,) N F @) =0. Then AB — BA =
04(B) = —d5z(A) belongs to the zero subspace so that AB — BA = 0.
Therefore 6 = 6,0, = 00, has range consisting of 0 alone so that A
or B must be a scalar by the theorem.

REMARKS. (1) The collection of ranges of (bounded) operators
on 57 is a lattice with respect to intersection and vector sum (See
[4, 5].) However if A, Be <& (5#) then wneither of the subspaces
FO) N R(05), PO, + A65) need be the range of a derivation.
Indeed, let 57 = 2S£ @D 54 be a decomposition of 57 into infinite-

dimensional subspaces and let 4 = ((1)8>’ B = (28) acting in the usual

way on S# P 57;. A simple verification shows that if 7' = (g%) € F(2F)

has the property #(6,) < F#(6,) + F(0;) then P, Q, R, S are scalars.
From this it is easy to see that .#Z(0;) + F# @, + H (65 and that
P (0r) C P04 N F(65) only if 6, = 0.

(2) The assertion of Corollary (2) is false for three derivations.
In fact, if A and B are as in the preceding remark and if C = B*
then Z(6.,) N (05 N F(0,) = 0.

2. In the remainder of this note we shall be concerned with
density properties of the range of a derivation on Z(5#). J. G.
Stampfli [9] has shown that <#(5,) is never norm dense, so we
consider the situation for the weak operator and weak* topologies on
FB(SF).

THEOREM 2. Let Ae Z(57). Then F#(6,) is dense in the weak
operator topology if and only if the commutant {A} of A does not
contain a monzero operator of finite rank.

Proof. If @ is a linear functional on <#(5#°) that is continuous
in the weak operator topology then there are scalars \; = 0 and
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orthonormal sets {e;}i~, {ej}~, such that
P(X) = 3 \(Xe, <)

for all Xe &#(5#). (See [3; p. 39] for example.) With each such
® we may associate the operator F' of finite rank given by F = >,
Mile; R e). Here if x,ye 5~ then x @y is the rank one operator
that takes v into z: (x Q@ ¥)(?) = (¢, y)x for ze¢ 5~

Now if z, ye 57, then

(AF — FA)x, y) = (X0 Ales @ €) — 200 (6: @ e) A)w, )
= 20 M (@, e)(des, y) — E i (e, y)(Az, €)

=2 (xR y)Aey, 6) — 2N (A Q y)e;, €)
=2(eQ@WA — A QY)) .

The preceding computation shows that if @ vanishes on the range
of §, then F commutes with A. Conversely, if F' commutes with A4,
then (XA — AX) =0 for all operators X of finite rank, hence by
weak continuity, ® vanishes on the range of J,.

REMARK. .Z2(0,) is dense in the weak operator topology if and
only if it is dense in the strong operator topology because <Z(5#)
has the same continuous linear functionals for these topologies (See
[3; p. 37].)

3. With respect to a suitable norm the space 7(5#) of trace
class operators on 5% is a Banach space and . (2#) is canonically
identifiable with the conjugate space of ©(5#). The weak* (or
ultraweakly) continuous linear functionals are those of the form
X —fr(X) = tr(XT) where Tez(5#). The map T-—f, is an
embedding of 7(5#) into & (5#°)* and the latter space splits into
the direct sum .27°° @ 7(5#) where .27° consists of those bounded
linear functionals on <Z(5#°) that annihilate the compact operators.
Thus each fe <& (27)* has the form f = f, + f, where f, is induced
by a trace class operator as above and f,e 2#°. The sum is even
orthogonal in the sense that || f|| = || frll. (See [3; p. 49].) We now
show that the annihilator of the range of a derivation also splits into
the direct sum of its parts in 2¢°° and 7(2#).

THEOREM 3. If Aec <& (57), then
F04)° = F0.)° N DAY N (eP) .

Proof. Let f be a norm-continuous linear functional that vanishes
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on #@®,) and let f =f,+ f, where f,e 2° and Tezr(s#). If
%, Yy € 5~ then

tr(de @ T*y) = fr(A@z Q@ v)) = f(AQY) = fl(k S v)4)
= (@ y)4) = tr(x Q@ T*A*y) .

Since tr(z Q@ W) = (2, w) it follows that
(Az, T*y) = (v, T*A*y)

for all #, ¥ and hence T commutes with 4. Also f,(4AX) = f(XA)
for rank one, and therefore for finite rank operators X. Since these
are weak* dense in #(5%) it follows that f,e 2 (0,)°. This implies
fo=F—Fre Z0,)°.

Conversely, the preceding computation shows that if
Te{AY Nt(=7),
then fre #6,)°.

COROLLARY 1. Let Aec . # (7). The following conditions are
equivalent:

(1) The norm closure of 20, contains %
(2) R0, 1s weak* dense in F(57).
(3) {AY nt(=») =0.

Proof. The negations of conditions (2) and (3) are each equivalent
to the condition that <#(6,)° contain a nonzero weak* continuous
linear functional. By Theorem 3 this occurs if and only if
HO.)° ¢ 2¢°. This last condition in turn is equivalent to the
condition that <2 (0,)~ does not contain S

REMARKS. (1) It is easy to exhibit operators that do not commute
with a nontrivial operator of trace class. For example the unilateral
shift of multiplicity one does not commute with any nonzero compact
operator. Hence there are many operators A with the property that
the norm closure of the range of 4, contains the compact operators.
However [2] there does not exist an operator A such that <Z(6,) D %<
More generally [9], the range of a derivation can contain no nonzero
two-sided ideal of <Z(5%).

(2) In contrast with the preceding corollary, it is not known
whether there is an operator A such that the norm closure of .<2(0,)
contains the identity operator. (See [10]). Since Z(6,) N{A}Y is a
two-sided ideal in {4}’ this question asks for an operator A such that
H(04)" D{AY. Two results are of interest here, namely: #(5,) N {4}
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consists of quasinilpotent operators (Kleinecke [6]), and: &#(5,) and
{A}Y are orthogonal if A is an isometry or if A is normal (Anderson
[1]).

An operator A on 57 belongs to the class Z, (1 <n < ) if 4
has an n-dimensional reducing subspace [7]. Fuglede’s theorem
implies that A€, =2, if and only if {4} contains a nonzero compact
normal operator.

If &%, 5% are subsets of & (57), let [S4, 4] denote the linear
span of the commutators S,S, — S,S, where S;e .41 =1, 2). Also,
let C*(A) denote the C*-algebra generated by the operator A.

COROLLARY 2. The following conditions are equivalent for
Aec F ()

(1) Ae U,

(2) {AY contains a monzero compact normal operator.

(3) [C*(A), Z(5#)] is not weak* dense in Z(57).

(4) [C*(4), ZF(57)] 1is mot demse in FH () for the weak
operator topology.

Proof. The subspace & = [C*(4), & (5#)] is self-adjoint and
therefore is not weak* dense if and only if there is a nonzero self-
adjoint weak* continuous linear functional f, that vanishes on &%
Since f, is norm continuous and self-adjoint, f, vanishes on & if and
only if f, vanishes on the range of J,. (See [10; Theorem 4] for
example.) Also, fr is self-adjoint if and only if 7% = 7. Thus
conditions (1) and (3) are equivalent by Theorem 3.

Linear functionals that are continuous in the weak operator
topology correspond (as in the proof of Theorem 2) to operators of
finite rank, and so a similar argument shows that (1) and (4) are
equivalent. Finally, we have already observed that (1) and (2) are
equivalent.

REMARKS. (1) Corollary 2 of course remains true if C*(4) is
replaced by the von Neumann algebra generated by 4 in (38) and (4).

(2) If T= T*e7(5#) is not of finite rank then the null space
of f, is weak* closed but weak operator topology dense in <Z(5%).
Thus the equivalence of (8) and (4) is not valid for arbitrary self-
adjoint subspaces.

(3) An operator A belongs to the class &# of finite operators
if there is a positive central linear functional for A. (By definition,
fe B (s7)* is central for A if f(AX) = f(XA) for all Xe Z(57).)
In [10] it was observed that U, &, C . and conjectured that the
union is norm dense in .#. This and the preceding corollary suggest
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another conjecture, namely: Ae.& if and only if [C*(4), & (5#)]
is not norm dense in .ZZ(25#). Necessity was proved in [10]. To
prove sufficiency one needs to show that if there is a self-adjoint
central linear funectional for A, then there is also a positive central
functional for A.
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