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The results in this paper reveal a dichotomy in regard
to the existence of fixed points for smooth real maps and
biholomorphic maps in Hubert space. Kakutani has shown
that there exists a homeomorphism of the closed unit sphere
of Hubert space onto itself which has no fixed point. A slight
modification of his example shows that there is a diffeomor-
phism having the same property. Our results show that in
the complex case every biholomorphic map of the unit ball
onto itself in Hubert space has a fixed point.

A function h defined on an open subset D of a Banach space
into a Banach space is called holomorphic in D if h has a Frechet
derivative at each point of D. Standard results about holomorphic
maps may be found in [4]. By biholomorphic we mean a holomorphic
map with a holomorphic inverse. It is a known result that in Cn an
injective holomorphic map is biholomorphic. The corresponding result
does not seem to be known in infinite dimensions even assuming the
range is an open set.

Our proofs make use of some results obtained recently for
holomorphic mappings in Banach spaces. One knows that in the
plane every bijective holomorphic map of the unit disk which takes
zero to zero is given by a rotation. In Hubert Space the analogous
result is that every biholomorphic map of the unit ball onto the unit
ball which leaves zero fixed is given by a unitary operator. This
result follows easily from the work of R. S. Phillips [6]. Also L.
Harris [3] has obtained more general results in this direction. Our
result is the following theorem for a complex Hubert space H.

Theorem: Suppose B = {ze H: \\z\\ < 1} and h is a biholomorphic
map of B onto B. Then h is biholomorphic in a larger region, maps
B onto B, and has a fixed point in B.

In § 2 we give a proof of the above result and in § 3 we show
that the fixed points are either isolated points or the fixed point sets
are affine subspaces.

2* Proof. Let if be a complex Hubert space and

B = {zeH:\\z\\ < 1} .

The first lemma can be obtained by an argument similar to that
used by Phillips [6] or from the work of Harris [3].
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LEMMA. (Phillips, Harris) If T maps B biholomorphically onto B
and T(O) — 0, then T is unitary.

We now obtain an explicit representation of all biholomorphic
maps of B onto B. Let {ea}aBI be an orthonormal basis in H and let
a0 e I be fixed. Define: f:B->H by

1 — βz 1 — βz «^Λ0

where /3 is a fixed complex number, \β\ < 1.

THEOREM 1. Suppose h: B—>B is a biholomorphic map of B onto
B9 with h(x°) = 0. Then h = TofoS where T and S are unitary
operators and f is defined by (1) with \β\ = \\x°\\. Therefore h is
biholomorphic in {xe H: \\x\\ < l/\\x° ||} and h has a fixed point in B.

Proof. Let us first show that / is 1 — 1 and onto B. Suppose
that (|a?|| = r < 1 and x = zeao + Σα^ 0^αβα . Then

\\f(x)\\2 = [\z - ^|2 + ( 1

Hence f{B) c
Let

i
l + βz

Then go f — f og = I (the identity map). Also g(B) c B by repeating
the above argument for / with β replaced by —β. Hence / is
1 — 1 and onto. A rather tedious but straight forward argument
shows that the Frechet derivative Df(x, o) of / at x is given by:

Df(x; y) =
(1 -

1/1I/9I 1

where 2/ = yaoeaQ + Σιa*aoyaea, for all ||a?|| < l/\β\. Similarly one may
show that f"1 is holomorphic. We now show that h — TofoS. Let
β = P(0) | | and let Γbe a unitary operator such that T(-βea) = h(0).
Since f^i—ββa^^O, then the map f^oT^oh is a biholomorphic
map of 5 onto 5 with fixed origin. Hence by the Lemma, f~ι o T~x o h
is a unitary operator and we have the desired representation.
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We now show that h has a fixed point in B.
Our original proof made use of the following interesting result

of Earle and Hamilton [2]

THEOREM, If D is a bounded connected open subset of a complex
Banach space then any holomorphic map g from D strictly inside
jD(i.e., 3ε > 0 such that \\g(x)—y\\>ε for all xe D, y£ D) has a
fixed point.

However J. W. Helton noted that our mapping was weakly-
continuous and the following direct proof is due to him.

w

Suppose xk >x0, where xk — zmeao + Σ«*αos«fc)e« is a net in B,
ΊJΰ

and x0 = z{O)eao + Σ ^ o ^ ^ We w * s h *° show that the net f(xk) >
f(x0). Let y e H, y = yoeao + Σ«*«o #«β«> t h e n

± — μZ cc^a0

Since xk > x0 we have that

hence / is weakly continuous. Since S and T are weakly continuous,
h is weakly continuous in a region containing B. Thus by an applica-
tion of the Schauder-Tychnoff Theorem h has a fixed point in B since
B is weakly compact.

3. Description of the fixed point sets* We thank the referee
for pointing out that our original results in this section could be
extended to infinite dimensions in the following simple way.

Suppose as before that B is the open unit ball in Hubert space
and that h: B—> B is a biholomorphic map of B onto B. An affine
subspace of B or its closure means the intersection of B or its closure
with a closed complex affine subspace of H. The following result
then follows easily from our representation of h.

THEOREM 2. Every biholomorphic map of B preserves affine
subspaces.

Now suppose h fixes a point y in B. Let g be a biholomorphic
map which sends y to 0. Then ghg~ι fixes 0, so it is linear and its
fixed point set is the affine subspace C. But the fixed point set of
h is g~ι{C) which is also affine by Theorem 2. Hence
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THEOREM 3. If h: B—+ B is bίholomorphίc and has a fixed point
in B, its fixed point set is an affine subspace.

Finally, suppose h has no fixed point in B. It must have at
least one fixed point on the boundary. If there are two fixed points,
h must leave invariant the one-dimensional affine subspace C which
contains them. Choose a biholomorphic map g so that g(C) contains
the origin. The map h0 — ghg~~ι then maps the one-dimensional
subspace g(C) onto itself, fixing two boundary points. Denote one of
these fixed points by x0. Then h0 = Uf, where U is unitary and

f(χ) = « X, Xp > - β)Xp + ( 1 - \ β \ Ύ l 2 ( x - <X,Xp> XQ)

1 - β < x, xo >

It is easy to see that h0 has only two fixed points, proving

THEOREM 4. If h: I?—>B is biholomorphic and has no fixed point
in B, then its fixed point set in B closure consists of either one point
or two points.
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