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If dί is a real or complex Banach space and Jίf(X) is the
algebra of bounded linear endomorphisms of 36 then each
element T of J5f(X) defines an operator Dτ on Jίf(%) by
DT(A) = AT- TA. C l e a r l y \ \ D T \ \ ^ 2 inf* \\T + λI\\ a n d
Stampfli has shown that when 36 is a complex Hubert space
equality holds. In this paper it is shown, by methods which
apply to a large class of uniformly convex spaces, that this for-
mula for 11 Dτ 11 is false in lp and Z>(0, ΐ)l<p<oo9pφ2. For
L1 spaces the formula is true in the real case but not in the
complex case when the space has dimension 3 or more.

Stampfli's results appear in [1] stated for complex Hubert space
but the same proofs yield the corresponding result for real spaces.

Throughout this paper K will denote either R or C. We begin

by describing the construction of an operator T of rank 1 with

| | D Γ | | < dτ = 2λnίλeK | | T + Xl\\. The reason that this fails in Hubert

space is precisely because for an ellipse, conjugacy is a symmetric

relation on the set of diameters; more precisely if x, y are two points

on the unit ball then y is parallel to the tangent plane at x if and

only if x is parallel to the tangent plane at y.

DEFINITION 1. Let a e ϊ , ||α?|| = 1. The unit ball Xx is uniformly
convex at x if whenever {yn} is a sequence with \\yn\\ *£ 1, \\x + yΛ\\ —>2
then yn—>x.

PROPOSITION 2. Let H be a normed space over K and let x,yeϋ

with the following properties

( i ) | | # | | = 1 and there is / G Ϊ * with \\f\\ = 1 and such that if

{xn} is a sequence with \\xn\\ ^ 1,/(»«)—>1 then xn—>x.

( ϋ ) \\y\\ — 1 and the unit ball 3^ is uniformly convex at y.

(iii) For some λeϋΓ, \\x + \y\\ < 1.

(iv) For all X in K, \\y + Xx\\ ;> 1.

Define Te^(X,) by Tz = f(z)y. Then 2\\T\\ = dτ> \\DT\\.

Proof. \\T+ XI\\ ^ \\(T+ Xl)x\\ - \\y + Xx\\^ \\y\\ = 1 by (iv)

and || Γ | | = 1 so dτ = 2. Suppose | | D Γ | | = 2 and choose sequences {A*}

from £?($) and {xn} from 36 with \\An\\ = 1= \\xn\\ and \\Dτ(AΛ)xΛ\\-*2.
As \\TAnxn\\^l, \\AnTxn\\^l we have \\TAnxn\\-+l,\\AΛTxΛ\\-+l
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and hence 11 Anxn \ \ —> 1, 11 Txn \ | —* 1. This shows (f(xn) \ —> 1 and so,
replacing xn by wn#n if necessary where {wn} is a sequence of elements
of K with |wΛ | = l, we may assume f(xn)—>1. Condition (i) now
implies a?ft—>a? and hence Txn-+y. In the same way | |TAW#J|—>1
implies | f(A»xn) \ —* 1 and replacing iiΛ by wlAw if necessary we can
assume /(Ana?Λ) —» 1 from which we see Anxn —> #, ΓAΛίcΛ —> ?/. As
| | A n | | ^ l we have AnTxn-Any-*0 and so \\AnTxn - TAnxn\\ ->2
implies ||Λ^/ — 2/ [[ —> 2. Condition (ii) now shows Any —* — 7/ so that
An(x + Xy) —>x — Xy. However if X satisfies condition (iii) then
\\x — Xy\\ > 1, as otherwise 2 = 2 | | # | | <̂  \\x + Xy\\ + \\x — Xy\\ < 2 , and
so lim \\An(x + Xy)\\ = \\x — Xy\\> 1 which is impossible because

PROPOSITION 3. Let 36 be a uniformly convex Banach space,

x,yeZ, f,ge%* with \\x\\ - \\y\\ = \\f\\ - \\g\\ = / ( » ) - g(y) = 1,

gr(^) = 0, /(^/) 9̂  0 αwd suppose f is the only element h of X* wiί/i

= Λ(a?) = 1. Then x, y, f satisfy the conditions of Proposition 2.

Proof. ( i ) If | K II ̂  1, / K ) -* 1 then f(x + xn) -> 2 and as
IN + χn\\ ̂  2, 11/11 = 1 we have ||a? + xn\\ —>2 so a?w —> a; by uniform
convexity.

(ii) is clearly part of the present hypotheses.
(iii) x and y are linearly independent as g(x) = 0, g(y) = lt x Φ 0.

If \\x + λ?/1| ^ 1 for all λ e if then <ra + βy H* <% is a norm one linear
functional on the space spanned by x and y and so has an extension
h in X* with \\h\\ = 1, /φ) = 1 but Λ, φ f because h(y) = 0 =£/(!/).

(iv) As (̂̂ / + Xx) = g(y) = 1, for all λ in K and | | # | | = 1 we
have \\y + λas|| Ξ> 1 for all X in K.

COROLLARY 4. If l < p <2 or 2 < p < oo and X = lp(0, oo) or

X = L p ( — 1 , + 1 ) is ί/̂ β corresponding K Banach space of K valued

functions then there is Te=2^(X) with \\DT\\ Φ dτ.

Proof. The spaces are uniformly convex and at each point z of
X with II2II = 1 the element h of X* with h(z) = 1 = ||fe|| is unique.
Thus the construction in Proposition 2 applies once we find two suitable
points x, y and these exist in such abundance that we can take any-
thing but multiples of characteristic functions for x. First of all we
give the construction in the two dimensional space lp(l, 2).

If x = (xt, x2), xt > 0, x2 > 0, x? + xξ = 1 then f(z) = xp~% + xξ~%
so 2/ can be taken as a(xξ~\ - xf1) where α"2' = ̂ f(p~1) + xiip~1} and
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g(z) = a*-ι(x?~ι)2 z1 - x{rι)2 z2). Then g(x) = a'-'faxί*-"2 - α?ίp-1)2 #2)
which will be zero if and only if xt = x2. Thus taking say
a = z~Uv{2ιlP, 1) and #, / , g as above the result is shown in Zp(l, 2).

As ϊ*(0, °o) and Lp(— 1, +1) each contain subspaces isometric
with ϊp(l, 2) we can construct x, y, f, g in this subspace and then
extend / and g to £ using the Hahn-Banach theorem.

In order to prove the results for spaces of measures we establish
the equation dτ = \\DT\\ for finite dimensional I1 spaces.

PROPOSITION 5. Let n be a positive integer and X be the real
Banach space Rn with norm \\x\\ — Σ |a?4|. Let Te J*f(3ί). Then
\\DT\\ = 2 i n f j β i ι | | Γ + λ J | | .

Proof. Suppose T is given by the matrix c% in the standard
basis eu e2, •••, en. We have || Γ| | = sup^ Σ ί \a>is\ Suppose Σ< |c%| =
|| T\\ for j = 1, , m but not for j > m. The condition || T\\ = \ dτ

is equivalent to saying that 0 is in the convex hull of α u, , amm

since if 0 does not lie in this convex hull then either \aό5 + λ | < \aj3-\
for j — 1, , m and small positive λ or for small negative λ and so
there are small values of λ with \\T + λJ | | < | | Γ | | whereas if 0 lies
in this hull and λ Φ 0 there is j with 1 ^ j ^ m and | α i 5 + λ | > | α^ |
so that || Γ + λ l | | > | | Γ | | .

It is clearly sufficient to prove the result when \\T\\ = ^dτ.
First of all consider the case m ^ 2 and suppose α u ^ 0 ^ α22. Let
A e=S (̂3£) be an operator of the form Aeι = e2, Aβ2 — ±βi, Ae, = ±e€

i = 3, • • . , w. Clearly ||AII = 1 and

e,- Te2\\

= I ± α2 1 - α121 + \an - α221 +

for a suitable choice of signs of the Aet since each sign to be chosen
corresponds to exactly one term | ± au — ai2\.

If m = 1 then α u = 0 because 0 lies in the convex hull of
0ii, J α w) and we define A by A^ = el9 Aeά — — βy j = 2, , ^
which gives | |A | | — 1 and AΓβi = — Teι so that

A K | | = \\ATe, - ΓAβJI = 2 | | Γ β l | | = 2

PROPOSITION 6. Let Ω be a compact topological space and 36 a
closed linear subspace of the (real) Banach space of real valued
measures on Ω with the property that if μeϋ then every measure
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absolutely continuous with respect to μ is in 36. Let TeJ*f(3L). Then
| |A.|| = 2 mfλBR\\T+\I\\.

Proof. We may assume dτ = 2 || T | | . Let ε > 0. For each v > 0
in 36 let Eu(μ) be the part of μ e X which is absolutely continuous
with respect to v. The Eu form a system of commuting idempotents
of norm 1 and EUEU, = Eu if i/ > v, so that \\EVSEV\\, where the
elements v are directed by the usual ordering of measures, is a
mono tonic direct net. It is easy to see that \\EVSEV || —> | |S|[. Thus
applying Dini's theorem to the functions λh-> \\EV{T + \I)EV\\ we can
find V G Ϊ , V > 0 with | | J ^ ( Γ + λ/)JE7J| > | | Γ + λ/|| - ε ^ ijT|| - ε
for | λ | ^ 2 | | Γ | | .

For each dissection Δ = (ΩL, , ί?w) of β into disjoint measurable
sets of positive v measure we define

where μeTί.ξe Rn, P/f X —• Rn, QΔ: R
n —>36 and ct is the characteristic

function of Ωt. Directing the dissections in the usual way it is easy
to see that for each Se^f{%) \\PΔEuSEjQΔ\\, where Rn has the I1

norm, is a mono tonic directed set with limit || 22^52^11. Applying
Dini's theorem again we see that there is a dissection Δ with

(*) | | P ^ v ( Γ + λ / ) ^ Q , | | > H 2 Ί I - S

for all |λ | <£ 2 | | T | | . For convenience we now denote EV,PΔ,QΔ by
E, P, Q. As these operators have norm 1 we see that inequality (*)
holds for all values of λ. As PE = P, EQ = Q, PEQ = PQ = identity
on Rn, (*) shows that dPTQ ^ 2( | |T | | — ε). By proposition 5 there is
Ae^(Rn) with \\DPTQ(A)\\ = dPTQ, \\A\\ = 1. As Q is an isometry
and P maps the unit ball of 36 onto that of Rn we have

dPTQ= \\QDPτq{A)P\\

= WQAPTQP - QPTQAPW

= \\QPDT{QAP)QP\\

^\\DT(QAP)\\.

As \\QAP\\ = 1 we have \\DT\\ ̂  dPτq ^ 2( | |Γ | | - ε) for each ε > 0
and the result follows.

In the complex space ^(1, 2) Proposition 5 is true and the proof
is similar to that for the real case. However the result is false in
higher dimensions for complex spaces, e.g., in Γ(l, 2, 3) let T be the
linear transformation given by the matrix
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1 — ω — ω2

1 ω — ω2

1 ω ω2

where ω3 = 1, ω φ 1. The situation is similar to that at the beginning
of the proof of Proposition 5 with m = n = 3 and the argument given
there shows that because 0 is a convex combination of diagonal
entries we have inf,ec || T + λ/|| = || T\\ = 3. If | |g|| = 1, ||A|| = 1
a n d \\Dτ(A)x\\ = 6 t h e n \\Tx\\ = 3 a n d s i n c e \x, ± ωx2 ± ω2x3\ ^ 1 w e
see t h a t | x 1 — cox2 — ω2x3\ = \χt + ωx2 — ω2x3\ — \xι

Jr cox2 + &>2x3 —
l^i I + |ff?l + I 3̂1 which occurs only if two of xl9 x2, x3 are 0. Multi-
plying by a complex number of absolute value 1, if necessary, we
can assume x = ex or e2 or e3. In the same way Ax = eι or e2 or e3.
If ΛJ = e1 = Ax then

||Z?Γ(A)β1|| = | k + Ae2 + Ae3 - e, - e2 - e3\\

= \\Ae2 + Ae3 - e2 — e%\\

^ 4

and if x = e19 Ax — e2 then

H ^ ί A ) ^ | | = ||β2 + Ae2 + Aβ3 + ωeL - ωe2 - ωe3 | |

= | |(1 - ω)e2 + Ae2 + Ae3 — ωe, — ωe3\\

g ι / y + 4 .

The other four possibilities give similar results and so we cannot in
fact have \\DΓ\\ = 6.

A similar construction in the complex spaces ΪL(1, n), lι(0, oo),
1/(0, 1), M(0, 1) shows that Proposition 6 is false in these spaces too.
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