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Let ^ denote the class of Blaschke products Biz, {zn})
such that

r
Jo

'(log\B(reiθAzn})\)2dθ

is bounded for 0 < r < 1. The distributions of the zeros of
Blaschke products in ^ are examined, and extensions are
made to earlier results of MacLane and Rubel.

1* Let {zn} be a nonempty sequence of nonzero complex numbers
in D(0, 1) = {z: \z\ < 1}. Then {zn} is a Blaschke sequence if and only
if

(i.i) Σ ( i - \z%\) < - .

If (1.1) holds then the Blaschke product

(1.2) B(z, {zn}) =
» \zn\ VI - zz,.

represents a function B(z, {zn}) regular in D(0, 1). It is well-known
that \B(z, {zn})\ < 1 when zeD(0, 1), and that

lim B(reiθ, {zn})
r->l-0

exists and has modulus 1 for almost every θ in [0, 2ττ].
Let

(1.3) I{r, {zn}) - ±- Γ (log I B(re», {zn}) \γdθ .
2π Jo

MacLane and Rubel [3] have considered the class ^ of Blaschke
products for which I(r, {zn}) is bounded on [0, 1). They have shown
that a necessary and sufficient condition for B(z, {zn}) to belong to

is that J(r, {zn}) is bounded on [0, 1), where

(1.4) J(r, {zn}) =
k = i

(rk -

In fact, the work of Rubel [4] shows that

(1.5) J{r, {*.}) = 2I(r, {zn}) - 2{iV(r, {zn}) log r + log Π

where ΛΓ(r, {̂ w}) denotes the number of elements in the sequence {zn}
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that belong to {z: \z\ <; r}.
Observing the difRculty in interpreting the condition that J(r, {zn})

is bounded on [0, 1), MacLane and Rubel sought to relate this condi-
tion to the distribution of the elements of the sequence {zn} in D(0, 1).
They proved the following results.

I. If

(1.6) N(r, {zn}) = O((l - r)~1/2) as r - > 1 - 0

then B{z, {zn}) e
II. If the elements of the sequence {zn} lie on a finite number

of radii of D(0, 1) then B(z, {zn}) e ^ only if (1.6) holds.
III. There exists a Blaschke sequence {zn} such that

lim I(r, {zn}) = 0 ,
r-»l—0

while

(1.7) lim N(r, {zn})(l - r)λ = »o
r-*l—0

for every X in [0, 1).

The aim of this paper is to obtain some further global properties
of the distributions of those sequences {zn} for which I(r, {zn}) is boun-
ded on [0, 1). Essentially we extend the result II above, but before
stating our intentions precisely we need to establish some suitable
notation. If θ is real, φ ^ 0, and 0 ^ r < 1 let

(1.8) A(r, θ, φ) =

{z: \θ - arg^ | g 2φ, r < \z\ ^ 4(1 + r)} ,

0 ^ ψ <

{z:r < \z\ ^ J(l + r)} ,

and let v(r, θ, φ, {zn}) denote the number of elements of the sequence
{zn} that are in A(r, θ, φ). Depending on the value φ, A{r, θ, φ) is
either an annulus or a subset of an annulus that is bounded by parts
of two radii of the circles which bound the annulus. The significance
of such regions has arisen elsewhere [2] in the theory of regular
functions. We now state the following theorem.

THEOREM 1. Let {zn} be a Blaschke sequence such that

I(r, {zn}) < Λ f < c o , 0 < r < 1 .

Then there is an absolute constant C such that

(1.9) v(r, θ, ιc(l - ry, {zn}) < ^ \
r( l — r)1/
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when 7 ^ 1 , and

(1.10) »(r, θ, tc(l - ry, {zn}) < C ^ { 1 + f ^ , 0 < r < 1, 0 ̂  0 < 2π
r(l — r)1 - 1 / 2 r

when 0 ^ 7 < 1.
The result II of MacLane and Rubel shows that the order of

magnitude of the right-hand side of (1.9) is best possible for small
values of 1 — r. That the order of magnitude of the right-hand side
of (1.10) is also best possible when 0 < 7 < 1 is proved as a theorem
which we state as follows.

THEOREM 2. Let 0 < 7 < 1. Then there is a Blaschke product
B(z, {zn}) in ^ such that

(1.11) v(r, 0, (1 - ry, {zn}) ~ (21-1'8'

as r —> 1 — 0.

In § 4 we will look more closely at the implications of Theorem
1 and Theorem 2. However, we will first turn our attention to the
proofs of these two theorems.

2* The proof of Theorem 1. In proving Theorem 1, we make
use of the following lemma.

LEMMA 1. Let {zn} satisfy the hypothesis of Theorem 1. Then
there is an absolute constant C such that

v ( r , θ , φ , { Z n ] ) < \
r(l — r)

for 0 < r < 1, 0 ^ θ < 2ττ, φ ^ 0.
Theorem 1 is deduced immediately by substituting φ = fc(l — r)r

in the lemma, and considering separately the cases where 7 e [0, 1) and
7G[1, 00).

We must now prove Lemma 1. In doing so we suppose without
loss of generality that θ = 0 and sin φ < 1/8. We will also suppose
that φ Φ 0 since the amendments to the proof that are necessary to
cover the case where φ = 0 are obvious.

Every term in the Blaschke product (1.2) has modulus less than
1 when 0 < \z\ < 1 and 0 < \zn\ < 1. Hence, if {an} is a subsequence
of {zn}, we have

I(R, {an}) < I(Λ, K}) < M, 0 < R < 1 ,

and therefore, by (1.5),
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(2.1)
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J(R, {«„}) < 2M, 0 < R < 1

Let {an} be that (finite) subsequence of {zn} which is contained
in A(r, 0, φ), and let R = i(l + r). Then, since | α j ^ i ί for all
relevant values of n9 (2.1) and the definition of J(R, {an}) yield

(2.2)

We now set L = 1 + [1/8^], noting that if 1 ^ k ^ L then

sin φ < —
4

arg α£ | ^ τrL| sin i(arg αn) | ^ 7r( 1 + ^ - ) si

Hence, we have

Σ άί Γ ̂  (Σ ^ s Y > ir ^ίr, 0, ?>, K})2 ,

and it follows from (2.2) that

(2.3) v(r, 0, φ, K})2 Σ ^ (^"fe ~

In dealing with (2.3) we note that an application of the mean-
value theorem shows that

R-k _ R<< = 5-4(1 _ _R«) > 2kR"-1{l - R) , 0 < R

so that

2 — (JS-fc - Rk)z > 4(1 -
kl k

Σ
k=ί

since # = i(l + r) and 0 < r < 1. Therefore (2.3) yields

12M
(2.4) y(r, 0, φ,

- r)(l -
0 < r < 1 .

However, by elementary properties of the exponential function,
we have

1-r
• + 1 - r '
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so that (2.4) implies that

thus completing the proof of Lemma 1.

3. The Proof of Theorem 2.

3.1. PRELIMINARIES. In proving Theorem 2 we consider a Blaschke
sequence {zn} defined as follows. Let 0 < 7 < 1, and let β satisfy
the inequality

(3.1)
2 - 7 "

Then we set

(3.2) s. = (l - - β W r , n = 2,3,

We shall, in fact, put β = (1 - iy)~ι for the proof of Theorem 2
itself. However, it is no more difficult to prove our preliminary re-
sults in the general case specified by (3.1) than in the particular case,
so we consider the general case as this leads to Corollary 4 which
we mention later.

By (3.1) we have β > 1 so that {zn} is a Blaschke sequence.
Further, if 0 < r < 1 and

r<\z%\ ^ i ( l + r) ,

then

- r)Y ^ arg zn

Hence

(3.3) v(r, 0, (1 - r)r, {zn})

as r-+l — 0, which is (1.11) when β = (1 — iΎ)"1.
It remains to show that B(z, {zn}) e ^ and to this end we show

that

(3.4) I(r, {zn}) = O((l - r) ( 2^- 2-^^ + (1 - ry
ι^"^iβr + (1 - ry

i2)

as r —> 1 — 0. Before verifying (3.4) we must find suitable bounds to
the moduli of the factors of the Blaschke product B(z, {zn}) subject
to (3.2). The following elementary results will be applied at various
stages during this investigation.
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LEMMA 2. If b is real then

Σ n~h = OiN1-" + log i\Γ) as

and if b > 1

Σ = OΐiV1-*) as

LEMMA 3. 1/ α > 0 and 6 > 0

f 1 < 4iV
" α 2 + nΨ (a + δ)(α + Nb)

and

# = 1 2 3
' f '

SI a2 + n2δ2 (a + 5)6 aδ

LEMMA 4. 7/ a1} a2, , aN are real numbers then

N \2 JV

LEMMA 5. If θ and 1 — r are nonnegative and not both zero,
and if b is real then

2~iδ-n < (̂  + 1 — r) ^ 216-1!2
(1 - r)h =

3*2* Estimates for the Blaschke factors^ In the remainder of
this section we shall let K denote a positive number, independent of
r, θ, and n. The value to be ascribed to K will vary from time to
time, but it should be noted that at each appearance there will be
some way of determining K in terms of β and 7. We suppose also,
without loss of generality, that | < r < 1, noting that i < \zn\ < 1
by hypothesis.

Let z = reiθ and zn = rne
ίθ*. Then

(2 5) 1 = π k 4- a-r2)(l-rj)\
K ' } I B(re», {zn}) |2 ί i I Q(r, r., β, α j J '

where

Q(r, rΛ, 5, an) = (r - rw)2 + 4rrw sin2 K^ - ««)

Now α:TO = ^~^r so that αwG (0, π). For the remainder of this subsec-
tion we shall assume that θe [0, π]. Then
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(3.6) Q(r, r%, θ, an) ^ (r - rnf + (l=Λ

For given values of θ and r let

We consider successively the cases in which

Fd n Gr == 0 and Fθ Π Gr Φ 0 .

Subsequently we shall make use of the inequality

/Q 7\ I/O sv I _

^ O . I J I c7 — C c w I —

and the similarly obtained inequality

(3.8) | r - r j ί

Let ^(g;) denote the product of those terms in B(z, {zn}) for which
n&Fθ(jGr. Then using (3.7) and (3.8) we have, for such values of
n,

(3.9) Q(r, rnf θ, an) > K{(1 - r) 2 + θ2 + n~*» + n~2?} .

Putting N = max (2, [(1 — r + 0)~ι!^\), where [x] denotes the integral
part of x, we apply Lemma 5 to (3.9), and obtain from (3.5) and
(3.6) the inequalities

log , * , < Σ

Thus Lemma 2 yields

(3.10) log , * , < K(l - r)(N2^+1 + log N) .

We suppose next that Fθ Π Gr = 0 . Then if ne Fθ we have
G>. Hence, it follows from (3.6) and (3.7) that

Q(r, rn, θ, an) > JSΓ{(1 - r)2 + ^~2^ + (n - θ-ιi

since, by the mean-value theorem,

(3.11) ( I T * -θ)= βrt{θ-u* - ^f-^-1 ,

where ξ lies between % and θ"11^. Let π2(^) denote the product of
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those terms in B(z, {zn}) for which ne Fθ when Fθ Γ\Gr = 0 . Then

log—1—< Σ m ~ r)θίlr -
\π2(re*θ)\ »*rθQ(r, rn, θ, an)

But if λ = [2β~ί/βr] the number of integers n in î ? does not exceed
λ. Hence

<
) I *=o ( 1 - r ) 2

(1 + θllr)(l + θ)(1 - r + θllr){l - r + θ) (1 - r + θ^f

by Lemma 3 and Lemma 5.
We now put μ = [2(1 — r)~ι}β]. Then, if πs(z) denotes the pro-

duct of those terms in B(z, {zn}) for which neGr in the case where
Fθ ΓΊ Gr — 0, we can make estimates similar to those for π2(z) to obtain

l θ g l7Γ 3 (r^) l ^ ( 1 - r ) *

(o lo) <Γ "s 1 ~\~ r

Finally, let us suppose that FβΓ\Gr Φ 0 . Then

(3.14) 4"'(1 - r) ^ (?1/'> ^ 4^(1 - r) ,

and if neFe\jGr then

1/8(1 - r)-1'-9 ^ Λ ^ 8(1 - r ) - 1 " .

Let iV( = iV((9)) denote the integer JV for which

N ^ θ^iH <N+1.

If w e Fe U Gr then we can apply (3.11) and (3.14) to obtain

(3.15) \θ - α j ^ ίΓlί?-1^ - %|0t+l'ft- ^ Xlβ- 1 ' " - w|(l - r)1"1-1" .

Now let He = {N-l,N,N+l,N+ 2}, and let JΓ4(Z) denote the
product of those factors of B(z, {zn}) for which ne(F9\J Gr)\H& when
Fe Π G> Φ 0 : if ί « Π S r = 0 we define τr4(z) = 1 when ze D(0,1).
Then, putting τ = [8(1 - r ) " 1 " ! , and using (3.5), (3.6), and (3.15), we
obtain

(3.16) -f_ £

< exp
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by application of the product formula for the function cosh. We now
define πb(z) to be the product of those factors of B(z, {zn}) for which
neHθ when Fθf)GrΦ0. If Fθ Γ) Gr = 0 we define π5(z) = 1 when
seZ>(0, 1). Then

3 17) Yf
{ ' } \πδ(reiθ)\ = JLΛ ^ sin2i(θ - an)

3*3* Completion of the Proof of Theorem 2* According to
the notation of § 3.2 we write

B(z, K}) = Π ^-(2) ,
3=1

noting that the numbers of Blaschke factors appearing in the sub-
products πό(z) depend on z, and that some of the products may contain
no Blaschke factors for some values z.

We must now verify (3.4). To begin with we have

I(r, {zn})< 2Γ(log |5(rβ», [zn})\fdθ

<8 18) . f .
< 1 0 Σ {\og\πά{reiθ)\γdθ

j=i Jo

by Lemma 4. We write

Iά{τ) = Γ(log \π3{reiθ) \)*dθ , i = 1, 2, 3, 4, 5 ,
Jo

and find bounds to each of these integrals by using the bounds to
the factors obtain in § 3.2.

First, we apply Lemma 5 to (3.10) to obtain

- r

(
(3.19)

K(l r)2{l

- 0{l - r ) ^ - 2 - ^ 7 ^ + (1 - r)2}

as r —> 1 — 0.
Next we observe that (3.12) and Lemma 5 implies that

I2(r) < K(J2(r) +

where

( 3 . 2 0 )
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Putting θ = t(l — r) r, we have

the integral existing since 0 < 7 < 1. Let Llf L2, L3 denote the con-
tributions to the integral J2 arising from the subintervals [0, 1 — r],
[1 — r, (1 — r)r] and [(1 — r)r, π] respectively. Then

Jo

L 2 < ( ( 1~ r ) Θ
Jl-r

and therefore (3.20) gives

(3.21) I2(r) < K((l - ry2?-2-^1^ + (1 - r ) ^ " 1 " ^ ^ + (1 - r)0 .

In considering the integral I3(r) we use the inequality (3.13) to
obtain immediately

(3.22) Iz(r)

For a given value of r, we have π^(reiθ) — 1 except possibly when

i(l - r)1^ ^ ^ i ; ^ ^ 4(1 - r)1^ .

Hence, by (3.16), we have immediately that

(3.23) Ur) < K(l - r ) ^ - 8 - ^ ^ .

Finally, we note that the inequality (3.6) can be suitably adapted
and applied to πδ(reiθ) so that, together with (3.17), we obtain

< K(l - r r " Σ ( > * (l + ^(1 - r)(l - rj VA
»=ΛΓ-1 JO V \ θ / /

\dθ

By applying the inequalities (3.19), (3.21), (3.22), (3.23), and (3.24)
to (3.18) we obtain (3.4). If we now substitute β = 2/(2 — 7), we
find that B{z, {zn}) e ^ and we have a sequence {zn} that satisfies the
requirements of Theorem 2.
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4* F u r t h e r properties of Blaschke products in ^ .

4A. We are now in a position to comment on the implications
of Theorem 1 and Theorem 2 concerning the distribution of the zeros
of those Blaschke products that are in ^ First we have an extension
of the result II of MacLane and Rubel which was stated in § 1.

COROLLARY 1. Let B(z, {zn}) e J?, and let the sequence of points
{zn} be contained in a finite number of Stolz angles with vertices on
{z:\z\ = 1}. Then there is a constant C such that

The proof of this corollary is based on the fact that, for any
given finite set of Stolz angles, the annulus {z: r < \z\ < J(l + r)}
intersects those Stolz angles in a set that can be covered by a finite
(fixed) number of sets of the form A(r, ξ, 1 — r) for 0 < r < 1. How-
ever, by (1.9) of Theorem 1, there is a constant H such that each of
these sets contains fewer than H(l — r)~1/2 elements of {zn}. A simple
summation argument then gives Corollary 1 as stated.

A further extension of this type can be obtained from the con-
clusion (1.10) of Theorem 1. Let

T(θ, K, 7) = U A(r, θ, κ(l - r)r) .
0<r<l

Sets of this sort have been considered elsewhere [1] in the theory of
Blaschke products. If 7 = 1 then T{θ, tc, 7) is a close approximation,
near the point eiθ, to a Stolz angle with vertex at eίθ. If 0 < 7 < 1
and tc > 0 then the boundary of T(θ, tc, 7) meets {z: \ z | = 1} only at
eiθ, and this boundary has a common tangent with the circle there.
The following corollary can be deduced from (1.10) in much the same
way as Corollary 1 was deduced from (1.9).

COROLLARY 2. Let B(z, {zn}) e ^ let 0 < 7 < 1, and let K > 0.

If the sequence {zn} is contained in a finite number of sets T(θp, Λ:, 7),
p = 1, 2, 3, , P, then there is a constant C such that

N(r, K}) < C(l - r)-1 +^/ 2 , 0 < r < 1 .

4*2• We now make a comparison of the conclusions of Theorem 1
that are embodied in the inequalities (1.9) and (1.10) respectively.
Let 0 < 7 < 1 and tc > 0. It is readily seen that the set

contains L(r) mutually disjoint sets of the form A(r, ξ, 1 — r), where
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(4.1) L(r) ~ fc(l - ry-1 as r -> 1 - 0 .

By (1.9) there is a constant H such that each of these L{r) sets con-
tains fewer than H(l — r)~1/2 points {zn}, this result being of the best
possible order of magnitude as r —> 1 — 0. Although some of the L(r)
disjoint sets A(r, ξ, 1 — r) may contain a comparatively large number
of points {zj, not all of them can; in fact, for any constant Ho, there
is a constant J3Ί such that fewer than ίZΊ(l — r) ( r~1 ) / 2 of the L(r) sets
can contain more than H0(l — r)~1/2 points of {zn}. In virtue of (4.1)
rather few of the sets A(r, ξ, 1 — r) can contain more than HQ(1 — r)~1/2

points of {zn}, and, since the remarks of this section hold for every
7 in (0, 1), those sets cannot be too close together in general.

4.3• MacLane and Rubel have verified the property III by con-
structing an appropriate Blaschke product B(z, {zn}) with the sequence
{zn} distributed fairly uniformly near the boundary of JD(0, 1), the
whole boundary being the set of accumulation points of {zn}. In prov-
ing Theorem 2 we have shown that for each number λ in (0, 1) there
is a Blaschke product B{z, {zn}) that belongs to ^ for which (1.7)
is satisfied, and for which {zn} has only one accumulation point on
{z: \z\ = 1}. Thus, in order that a Blaschke product B(z, {zn}) in ^
should have its counting function N(r, {zn}) large as r —* 1 — 0 it is
not necessary for the Blaschke sequence {zn} to have more than one
accumulation point on {z: \z\ — 1}. However, if {zn} has only one ac-
cumulation point eiθ and N(r, {zn}) is large as r —• 1 — 0 then, by
Corollary 2, it is necessary that the points of the sequence {zn} should
be widely dispersed in the neighbourhood of eiθ in the sense that, for
infinitely many n, (θ — arg zn) should be large in comparison with
fixed positive powers of 1 — \zn\.

4A. Next we note that Theorem 1 implies a restriction on the
orders of multiple zeros of Blaschke products in ^J\ For example,
the application of (1.9) gives immediately the following corollary.

COROLLARY 3. Let B{z, {zn}) be a Blaschke product in ^ and let
p(zn) denote the order of the zero of B(z, {zn}) at zn. Then

(4.2) p(zn)(l - \zn\y> = 0(1) as n-> - .

In comparison with (4.2) we note the weaker relation

(4.3) ρ(zn) (1 - I zn I) -> 0 as n -> oo

which is valid, and in fact best possible, for the class of all Blaschke
products B(z, {zn}). Incidentally, (4.3) shows that (1.10) is not best
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possible in the case where 7 = 0, although in general the index
1 — i7 cannot be reduced to any smaller constant in this case.

4*5* Finally we comment on those Blaschke sequences {zn} for
which I(r, {zn}) is small as r —• 1 — 0, noting the following immediate
consequence of (3.3) and (3.4).

COROLLARY 4. Let 0 < 7 < 1, β > 2/(2 - 7). Then there is a
Blaschke sequence {zn} such that

I(r, {zn}) = o(l)

while

v{r, 0, (1 - r)?{zn}) ~ (21" - 1)(1 - r)~^

as r —> 1 — 0.
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