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In this paper, preordered topological spaces obeying two
natural conditions, known as bicontinuous preordered spaces,
are studied. The relationship between the topology of such
a space and two associated convex topologies is examined.

Let (X, j ^ 7 ^ ) be a preordered topological space (that is, X is a

set endowed with both a topology J7~ and a preorder <; and is usually

denoted by (X, ^ ~ ) ) . For each xeX and 4 g l ,

[x, ->] = {y e X: x ^ y} , [<-, x] ^ {y e X: y ^ x} ,

U {[*, -+]:xeA}, d(A) = \J {[<-, a] : ^ G A }

and A is increasing (decreasing, convex) in X if and only if A — i(A)
(A = d(A), A — i(A) Π d(A)). A denotes the ^closure of A in X.
(X, J?~) is said to be continuous (anti-continuous) if and only if for
each ^^open subset Gf.^closed subset F) i(G) and d(G) are ^ o p e n
(i(F) and d(F) are .^closed). (X, ^~) is said to be bicontinuous if
and only if it is both continuous and anti-continuous. The topology
^~(or often it is said the preordered space (X, JT')) is locally convex
if and only if the set of convex ^neighbourhoods of each member
of X is a base for the ^neighourhood system of the member, weakly
convex if and only if the set of convex ^^open subsets is a base for
^ 7 almost convex if and only if the set of convex ^^closed subsets is
a subbase for the family of ^ :closed susets, and convex if and only
if the set of .^open subsets which are either increasing or decreasing
is a subbase for ^Z It is evident that for a preordered space, con-
vexity implies weak convexity which, in turn, implies local convexity
and also, convexity implies almost convexity.

Let ^l be the collection of all subsets of X of the form i(F),
d(F), where F is a ^closed subset of X and let &c be the collec-
tion of all subsets of X of the form i(G), d(G), where G is a J7^
open subset of X. Then ^ Ί and gfc form, respectively, a subbase
for the closed sets and a subbase, for convex topologies ^ and ^ 7
which are known as the J7~-associated convex topologies for X. The
topology ^ 7 was introduced by Green [1] and some of his results are
quoted here without proof. It is of interest to learn that even when
(X, J^) is a convex preordered space, neither J7~ = ^ 7 , ^~— J7~c

nor ^ 7 = *^7 need be true (see Examples 1, 2).

THEOREM 1. ( i ) (X, ^~) is anti-continuous if and only if
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i(A) £ ί{A) and d(A) g d(A) for every A s X
(ii) (X, ^~) is continuous if and only if i(A) s i(A) ewwϊ
g e?(A) /or every A g l ,
(iii) (X, ^ " ) is bicontinuous if and only if i(A) = i(A)

d(A) = d(A) for every 4 g l .

Proof. ( i ) Let (X, ^~) be anti-continuous then, for every
4 g l , i(A) contains i(A) and is ^closed, so that i(A) g i(A). Dually,

)gί(I).

Conversely, let F g l b e ^closed, then F = F and

so that i(F) is ^closed. Dually, d(F) is ..^closed.
(ii) Let (X, ^~) be continuous; then, for every 4 g

X — d (X — i(A)) is ^closed, clearly increasing and contains A so that

ΊΪA) s X -

On the other hand, X — i(A) g d(X — i{A)) implies

X - d(X - i{A) s i(A) ,

and thus

= X- d(X- i{A)) .

Hence, i(A) s i(A). ^
Conversely, let i(A) g i{A) and d(A) g d(A) for every 4 g l and

let G g X be .^open. Then X - G is ^=closed and X-i(G) g l - ( ϊ
so that G g X - ( X - i((τ)). By hypothesis,

d(X - i(G)) £ d(X - i(G) - (X - ί

so that X - i(G) is decreasing. Thus i(G) g l - ( l - i(G)). On the
other hand, it is clear that X — %{G) £ X — i(G) and hence

X - (X - i(G)) £ ΐ(G) .

Consequently, i(G) = X— (X — i(G)) is ,^open. Dually, d(G) is
(iii) This is immediate from ( i ) and (ii) above.
The following examples show that the " continuity " and " anti-con-

tinuity" concepts for a preordered space are logically independent.

EXAMPLE 1. Let X = Y\J{w), where Y is the subset
{(x, x): 0 ^ x ^ 1} and w is the element (0,1) of the real plane. X
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is (partially) ordered by agreeing that (α, b) ̂  (c, d) if and only if
a ^ c and 6 ^ <2 in the real line. Let ^ C denote the usual metric
topology for X. Let A — Y — {(0, 0)}, then A is increasing in X,
A = Y,we ί(A) = i(Γ) = X, and w ί ί(X) = A = Y. By Theorem 1
(ii), (X, ^/£) is not continuous.

However, it is evident that (X, Λί) is a compact space and, since
^ # == ̂  the well-known interval topology for X, it follows from
[2, Theorem 2] that (X, ^€") is a JT-ordered space so that, by [5,
Proposition 4, p. 44], (X, ^#) is anti-continuous.

EXAMPLE 2. Let I ^ i u S u C U {w}, where A = {α%: n > 2},
5 — {bn: n > 2}, C = {c%: w > 2} and where αΛ, &Λ, cn, w are the elements
(1/tt, 1 - 1/w), (1M 0), (0, 1 - 1/n), (0, 1) respectively of the real
plane for each n ^ 2. X is (partially) ordered as in Example 1 above.
Let ^ denote the usual metric topology for X. It is clear that the
sequences {an, n > 2}, {<?„, w > 2} ^^-converge to w in X and that
each singleton subset of X, with the exception of {w}, is ^#-open.

Let E be an increasing subset of X. Then, either E = E or E =
£Ίj {w}, so that £ is increasing in X. If £/ is a decreasing subset
of X and we E, then E is ^"-closed and E = E. If w$E, there
exist two possibilities:

( i ) i? Π C is finite. In this case, since E is decreasing in X,
E Π A is also finite. Assuming that it is nonempty, E Π B is de-
creasing in X since both i? and B are decreasing in X, and £7 Π 2? is
linear and hence E Π B = [<—, 6m], where m is the least integer n > 2
such that bneEΠB. Then,

£7 - J57 n (A U J5 U C) = (E n A) U (# n B) U (£7 Π C)

is ^/f-closed and E ~ E.
(ii) J57n C is infinite. In this case C g £7(otherwise there exists

c e C Π (X — E) so that, since E is decreasing in X, E Π [c, —>] is
empty which implies that EnC = E Π {[c, -*] U [<-, c]} = J& Π [<—, c]
is finite). The sequence {cn} ^-converges to w so that E is not
^T-closed but 2? = JE7 U {W}. Since [<-, w] = C u M s S u M , j ^ is
decreasing in X.

Consequently, it follows directly from [1, Lemma 1] that (X, ^£)
is continuous.

However, although B = [<—, 62] is .^-closed, ί(β) = A U B is not
^^-closed since the sequence {αj ^C-converges to w. It follows that
(X, ^/f) is not anti-continuous.

THEOREM 2. Lβί (X, ^ " ) be a ^reordered space.
( i ) ^l s ^ " i/ α^d otiϊ?/ if (X> JT') is an anti-continuous space.
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In this case, (X, j^~d) is also anti-continuous.
(ii) If Sf is an almost convex topology for X, with respect to

the preorder on X, and if S^ £ ^~ ,then £S
In particular, if j?~ is almost convex, J7~ £

Proof. ( i ) By definition, (X, ̂ ~) is anti-continuous if and only
if each member of Jϊu is ^ c l o s e d hence if and only if ^ £ ^ 7

If J ^ g ^ for X and if ,F £ X is ^-closed, then .F is
closed which implies, in particular, that i(jP) and d(F) are ^
and hence (X, ̂ J ) is anti-continuous.

(ii) Let F be ^c losed in X. Since ^ is almost convex there
is no loss in generality in assuming that F is convex in X. Then,
by hypothesis, F is ^-closed and F = ^i*7) Π dCF7) is ^-closed. Thus

for X.

COROLLARY. Le£ (X, ̂ " ) δβ α preordered space. Then, if ^ ϋ ^ ,
is ίΛβ maximum of all almost convex topologies on X which are

weaker than J7~. The following statements are equivalent:
( i ) (X, ̂ 7~) is a convex anti-continuous preordered space.
(ii) (X, x^

r) is an almost convex anti-continuous preordered space.
(iϋ) j T

THEOREM 3 [I]. Let (X, J7") he a preordered space.
( i ) ^ 7 g ^~ if wndi °nly if (X, J7~) is a continuous space. In

this case, (X, ̂ 7) is also a continuous space.
(ii) If 6^ is a locally convex topology for X, with respect to the

preorder on X, and if S^ £ ^ 7 then S^ Q J7~c.
In particular, if S" is locally convex, J7~ £

Proof. Arguments, analogous to these in the proof of Theorem 2,
will suffice.

COROLLARY 1. Let (X, ̂ ~) he a preordered space. Then if
^ 7 is the maximum of all locally convex topologies on X which are
weaker than ^ 7 The following statements are equivalent:

( i ) (X, j^~) is a convex continuous preordered space.
(ii) (X, J7~) is weakly convex continuous preordered space.
(iii) (X, j?~) is a locally convex continuous preordered space.
(iv) ^ " = ̂ 7 .
COROLLARY 2. (X, ̂ ~) is a convex bicontinuous preordered space

if and only if ^ = ^~ = ̂ ~c.

EXAMPLE 3. Let (X, ΛT) be the ordered space of Example 1.



BICONTINUOUS PREORDERED TOPOLOGICAL SPACES 527

Since ^ = ^, ^t is evidently a convex topology for X. Therefore,
^ff = ^^d by Theorem 2, Corollary; however, by Theorem 3 and
Example 1, ^ c

EXAMPLE 4. Let (X, ^f) be the ordered space of Example 2.
Again, it is evident that ^ — J? for X and it follows, by Theorem
2, Theorem 3, Corollary 1 and Example 2, that ^ = ^ c ^ .

More generally, it may be seen from Theorem 2, Corollary and
Theorem 3, Corollary 1, that for a preordered space (X, ^~), if
^ = J^ (^ = ^Z) then ^ s ^ 7 ( ^ g ^ ) Also from Theorem
2 (ii) and 3 (ii), it follows that J ^ c ^ ~ ( ^ 7 c J Π implies ^ g ^ T
C - ^ 7 ϋ ^ ) From these considerations and Theorems 2(i) and 3
( i ) , the following result may be deduced:

THEOREM 4. (X, J7~) is a bίcontinuous preordered space if and
only if

EXAMPLE 5. Let N denote the set of integers with the usual
magnitude order and let & be the coίinite topology for N. If U^N
is ^-open, then i(U) — N = d(U) and (N, ̂ ) is a continuous space.
However, if n e N, neither i({n}) — [n, —>] nor cZ([?ι]) = [*—, n] is in-
closed and (N, ̂ ) is not anti-continuous. Since the only increasing
or decreasing ^-open subsets of N are N and the empty set, it
follows that (N, c^) is not a convex ordered space and hence not
locally convex by Corollary 1, although it is evidently almost convex.

When it is remarked that ^ c , ^ are the trivial and discrete
topologies respectively, for N, it becomes clear that ^c c ^ — ^ .

2 Let (X, άΓ) be a preordered space and let A g l . Then A
is said to be ^-closed scattered (j^Γ-open scattered) if and only if

i(F)nA^i(FΓ)A) and d(F) Π A G d(Fn A)

As i (CrnA) and d(CΓ) n A s

for each ^closed J?7 G_^open U) S-X such that JP Π A(U Π A) is non-
empty.

THEOREM 5. ( i ) If A is ^-closed scattered, then
(ii) Jf (X, J7~) is anti-continuous, then, {j7~d)A g {
(iii) If (X, J7~) is almost convex and anti-continuous, then

Proof, ( i ) Let F g i be ^^-closed, then there exists a
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closed F* with F = F* Π A. Thus

%(F) n A = i(F* n A) n A = i(F*) n A

is (^Q^-closed. Dually, d(F) Π A is (JQ^-closed.
(ii) If F is ^closed in X, then, by hypothesis, ί(F), d(F) are

^closed so that i{F) Π A, d(F) Π A are .^-closed (as well as, respec-
tively, increasing and decreasing in A) so that {^~d)A £ C-̂ Qd

(iii) This is immediate from (ii) above and Theorem 2, Corollary.

THEOREM 6. [1]. (i) If A is ^~-open scattered, then ( J Q C £
(ii) If (X, J Π is continuous, then ( J Q ^ £ (JQ C .
(iii) If (X, J7~) is locally convex and continuous, then

ε (^De-

Proof. Arguments analogous to those adopted in the proof of
Theorem 5 will suffice.

COROLLARY. ( i ) // (X, ̂ ~) is bicontinuous, then

and

(ii) // (X, ̂ " ) is convex and bicontinuous, then

and

Proof. ( i ) This is immediate by Theorem 4, 5 and 6.
(ii) This is immediate, by Theorem 3, Corollary 2 and Theorems

5, 6.

EXAMPLE 6. Let (N, ̂ ) be the ordered space of Example 5 and
let A be a finite subset of N containing at least two distinct mem-
bers. It is evident that A is neither ^-open scattered nor ^-closed
scattered and that (A, ̂ A) is a discrete space so that {^A)c = ^A,
yet {^C)A c {^A)c for {A, {^C)A) is a trivial space. Similarly, {&A)d =
<&A and, in fact, {^A)d = {<^d)A = <&A for, if xe A,

{x} = [x, H n h » ] n A = {*({&}) n d(M)} n

is (^)^-closed and (A, (^d)A) is a discrete space.

Let a<b<c in N, then 5 = N — {α} is ^-open scattered but
not ^-closed scattered. For, F = {α, c} is ^-closed in iV" but
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ί(FΠB)nB = [c, ->] c [a + 1, —] - i(F) Π 5 .

It is also clear that (C£7

B)C = (^ β ) s c ^ , since ^B is the cofinite
topology for B while ( ^ ) c = (^ c)β is the trivial topology for J5. Also,
since ( ^ ) d = (^i)* is the discrete topology for B,

Finally, an abstract topological space, when viewed as an ordered
topological space with the trivial order, is clearly bicontinuous. Con-
sequently, in attempting to generalize classical topological results in
ordered spaces, it seems appropriate to work with bicontinuous ordered
spaces. Some support to this observation is provided in [4]. For
example, if (X, J7~) is a bicontinuous TΊ-space, then (X, j7~d) is a Tx-
ordered space (see [3]) and, by Theorem 2 above, _^J s ^ for X so
that (X, <ί7~) is a reordered space.
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