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In this paper, three new characterizations of uniform
convexity of a Banach space X are established. The charac-
terization developed in Theorem 1 resembles the definition
of the modulus of smoothness given by J. Lindenstrauss.
The characterizations developed in Theorems 2 and 3 are
interrelated, both involving the duality map of X into X*.
The methods used are adapted to give an abbreviated proof
of a recent result of W. V. Petryshyn relating the strict
convexity of X to the duality map of X into X*.

The following definitions are included for reference. For a Banach
space X, the unit sphere of X, denoted by Su is the set of all
elements of X having norm 1. A Banach space X is uniformly
convex if for each t in (0, 2], 2 δ(t) = inf {2 — ||a? + y\\: x, yeSly

\\x — y\\ ̂ > t} is positive ([1], [2]) (the function δ is called the modulus
of convexity of X). A direct consequence of this definition is that
each of the following conditions is equivalent to X being uniformly
convex:

( i ) Whenever {an} and {bn} are sequences in SL such that
11^ + 6,11-2, then \\an-bn\\-*0.

(ii) Whenever {an} and {bn} are sequences in X such that
| | α j | - l , 116,11-1, and 11^ + 6.11-2, then | K - δ J | —0.
(see [3, p. 113] or [9, p. 109]). The modulus of smoothness of X is
the function p such that for t ^ 0,

2 p(t) = suv{\\x+ ty\\ + \\x- ty\\ - 2:x,yeS1}

([5]). A Banach space X is strictly convex if for each x and y in Si
such that xΦy and each λ in (0,1), ||λa? + (1 - \)y\\ < 1 ([1], [6]).
A function J: X—>2X* is a duality map of X into X* if for each x
in X,J(x) = {weX*:(w,x)(=w(x)) = \\w\\\\x\\ and | | w | | = | | α | | } (see

[6] for notation and a list of pertinent literature).

I would like to thank Professor Tosio Kato for suggesting the
following formulation of Theorem 1.

THEOREM 1. Let φ be a strictly convex and strictly increasing
function on [0, 2] such that φ(l) = 1. Then X is uniformly convex
if and only if for each t in (0, 1], a{t) = inf {φ(\\x + ty\\) +
Φ(\\x — ty\\) — 2: x, yeSt} is positive.
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Proof. Suppose that X is uniformly convex and that there is a
t in (0, 1] such that a(t) — 0. Then there exist sequences {xn} and
{yn} in S1 such that if we let an = xn + tyn and bn = xn — tyn, then
0(l|ttn II) + Φ(\\K II) —> 2. Since ψ is convex and nondecreasing and
φ(l) = 1, 2 ^ 20((| |αJ| + ||δn||)/2) ^ <*(||αj|) + φ(\\bn\\) - 2 and thus by
the strict convexity of ^, we have that | | | α Λ | | — | | δ Λ | | | —> 0. The
preceding inequality and the continuity of φ~ι at 1 imply that
ll^nll + ||6Λ | |—>2 and consequently that | |α w | |—>1 and | |δw | |—»1. For
each n, \\an + bn\\ = 2, so the uniform convexity of X implies that
2t = \\an — bn\\—>0, which is contradictory.

Now suppose that a(t) is positive for each t in (0,1]. For fixed
x a n d y i n S l y t h e f u n c t i o n h(t) = φ(\\x + ty\\) + φ{\\x — ty\\) — 2 i s
convex, and since h(0) = 0 and h ̂  0 on [0, 1], & is nondecreasing.
Therefore, since a is the infimum of a collection of nondecreasing
functions, a is nondecreasing on [0, 1]. By the definition of α, if

Π^/lί ^ j | ^ || ^= o , - t h e n ^ c π ^ -K /̂ Π / ! l ^ fD -4- ^Cίlc^ — ^ / | j / π ^ |(> — 2 ̂  ^ C l ί ^ / Π / H ^ π>.
Thus if a and b are in S1 and \\a — δ| | g \\a + 6||, v/e have that

(1) 2^(2/|Iα + 6||) - 2 ^ α(| |α - 6||/||α + δ||) ̂  a(\\a -

Now, let {αj and {6J be sequences in St such that \\an + δΛ | |—>2.
We may assume that for sufficiently large n, \\an — δ n | | ̂  \\an + δ Λ | | .
Thus inequality (1) and the continuity of φ at 1 imply that
a(\\an — δΛ||/2)—*0, so \\an — δΛ||—>0 and X is uniformly convex.

Inequality (1) above gives a bound on the modulus of convexity,
§, in terms of φ~ι and a. By considering each of the cases
\\a - b\\ ̂  \\a + δ| |, 1 ^ | |α + δ| | ^ \\a - δ| |, and | |α + δ| | < 1, it
follows that 2δ(||α — δ||) is not less than the smaller of

1, llα - δll {^( l + l/2α(l/2)) - 1} f

and \\a - b\\ {^(1 + 1/2 a(\\a - 6||/2)) - 1}.
In Theorem 1, the case when φ(t) = f merits special attention.

Note that for each Banach space X and each t in [0,1], a{t) <£ 2t2;
moreover, X is an inner product space if and only if a{t) — 2f for
each t in [0,1]. In the same vein, note that X obeys a weak paral-
lelogram law (i.e., there is a λ in (0,1] such that for each x and y
in X, \\x + y\\2 + X\\x- y\\2 ̂  2 p | | 2 + 2 \\y\\2 - see [4]) if and only
if there is a μ in (0, 2] such that a(t) ^ μt2 for each t in [0, 1].

THEOREM 2. A Banach space X is uniformly convex if and only
if for each t in (0, 2], β{t) = inf {1 - (/, y): x, ye Sl9 \\x - y\\ ̂  t,
f eJ(x)} is positive, where J is the duality map from X into X*.

Proof. If X is uniformly convex and x,yeSι and f eJ(x), then



CHARACTERIZATIONS OF UNIFORM CONVEXITY 579

1 - ( / , y) = 2 - ( / , x + y) ^ 2 - \\x + y\\ ^ 2 δ ( \ \ x - y\\).
Now suppose that β > 0 on (0, 2] and that X is not uniformly

convex. Then by the definition there exist sequences {xn} and {yn}
in S, such that 0 < | |αΛ + 2/w||—>2 and for each n, \\xn - yn\\ ^ t.
For each n, let an = \\xn + yn\\~\ zn = an(xn + yn)9 KeJ(zn),f%eJ(x%),
and gneJ(yn). Then,

2 - I K + 2/ ll - 1 ~ (A , x») + 1 - (A , Vn) ̂  0(||α?« - s.||)

+ β(\\Vn - z»\\)-

But neither ||a?Λ — zn\\ nor | | # n - s w | | is less t h a n tan — \1 - 2α Λ | , so
t h a t for sufficiently large n, we have | | α Λ — zn\\ ^ ί/4, | | ^ - zn\\ ^ ί/4,
and 2 - \\xn + y Λ | | ^ 2β(ί/4), which is contradictory.

THEOREM 3. 4 Banach space X is uniformly convex if and only
if the duality map J of X into X * is uniformly monotone-m the sense
that for each t in (0, 2], y(t) = inf {(/ - g, x — y): x, yeSu\\x — y\\ ^ ί ,
/ 6 J(x), g e J(y)} is positive.

Proof. If X is uniformly convex and x,yeS19feJ(x),geJ(y),
then (f-g,x-y) = 2-(g,x + y)+2-(f,x + V)^ 2(2 - \\x + y\\),
so J is uniformly monotone.

Suppose J is uniformly monotone and X is not uniformly convex.
By Theorem 2, β(ί) = 0 for some t in (0, 2]; i.e., there exist sequences
{xn} and {?/„} in St and {/J in X* such that for each n,

f n e J ( χ n ) , \\χn - y n \ \ ^ t ,

and 1 - (Λ, p.) -> 0. Since 1 - (/., yn)^2- \\xn + yn\\ ^ 0, then
11»» + 2/* 11 —• 2 and we may assume that 11 cc» + 2/» 11 > 0 for each ?ι.
As in Theorem 2, let an = \\xn + yn\\~\ %n = »wfe + 3/«)» and hneJ(zn).
Thus, (An>a?Λ + »n) = Ha?, + yn\\->2 and since ||Λ.|| = 1 = ||α?»|| = \\yn\\,
then (fen, a;n) —> 1. So,

(A» ~ /», «» ~ »») = 1 - α» - «*(/», Vn) + 1 - (Aw, O -• 0 .

However, as in Theorem 2, for sufficiently large n, we have that
||a?n - s»|| ^ ί/4 and (hn - /Λ, ^ - a;n) ^ 7(ί/4), which is contradictory.

Now we turn to the previously mentioned result of Petryshyn
[6, Theorem 1, p. 284-287]. We need the following theorem, proved
in slightly different form in [8, Theorem, part iii]. We include a
proof of it here for completeness. In the sequel, we shall use the
following characterization of strict convexity due to Ruston [7]: A
Banach space X is strictly convex if and only if for x and y in Sx

such that x Φ y, 2 — \\x + y\\ > 0.



580 W. L. BYNUM

Theorem (Torrance [8]). A Banach space X is strictly convex if
and only if for x and y in Sλ such that x Φ y and for / in J(x),
1 - (/, y) > 0.

Proof. Suppose that X is strictly convex and let x, y, and / be
as above. Then, 1 - (/, y) ^ 2 - \\x + y\\ > 0.

Now suppose that the second condition of the theorem is satisfied
and that X is not strictly convex. Then, there exist x, y e S^x Φ y)
such that \\x + y\\ = 2. Let z = (x + y)/2 and heJ(z). Since
\\h\\ = 1 = ||α?|| = \\y\\ and (h, x + y) = 2, (A, a?) = 1, a contradiction,
since z Φ x.

Theorem (Petryshyn [6]). A Banach space X is strictly convex
if and only if the duality map J of X into X* is strictly monotone-
in the sense that if x Φ y, f e J(x), and g e J{y), then (/ — g, x — y) > 0.

Proof. Suppose that X is strictly convex. Let x,yeX, f eJ(x),
and geJ(y). Then, | | / | | | | y | | - (/, y) ^ \\f\\ (\\x\\ + | | y | | - | | * + y\\)
and | |flr| | | |aj| |-(flr,α?)^||flr| |(| |a?|| + | | 3/ | | - | |α j + ί/||) and by the use
of equation (#) of [6], we have

(f-g,x-y)^(\\x\\- \\y\\y

+ (11*11 + I M I X I M I + \\vW- l l * + i / l l ) .

If x Φ y and | |g | | = \\y\\, then | |g | | > 0 and ||a?|| + \\y\\ - \\x + y\\ =
||α?|| (2 — ||a?/||ίc|| + y/\\x\\ 11), which is positive by the strict convexity
of X. Consequently, J is strictly monotone.

Now, suppose that J is strictly monotone and that X is not
strictly convex. Then by the previous theorem, there exist x,yeSt

(x Φ y) and an fe J(x) such that 1 — (/, y) = 0. As before,
1 - ( / , ! / ) ^ 2 - \\x + 7/11, so | | s + y| | = 2. If z = (x + y)/2 and
ΛeJ(s), then (h,x + y) = 2 and | |λ | | = 1 = p | | = | | j / | | , so (&, a) - 1.
Consequently, (h — f, z — x) = 1 — (A, cc) + 1 — (/, 2) = 0, which con-
tradicts the fact that z Φ x.
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