Pacific Journal of

Mathematics

ON THE DENSITY OF (k, r) INTEGERS

Y. K. FENG AND M. V. SUBBA RAO




PACIFIC JOURNAL OF MATHEMATICS
Vol. 38, No. 3, 1971
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Let k& and r be integers such that 0 <r <k, We call a
positive integer n, a(k, r)-integer if it is of the form n= a¥b,
where ¢ and b are natural numbers and b is r-free,
Clearly, a(oc, r)-integer is a r-free integer, Let Q. denote
the set of (k, r)-integers and let §(Q;,.), D(Q:, respectively
denote the asymptotic and Schnirelmann densities of the set
Qir. In this paper, we prove that 8(Q:.) > D@ =
LYY — S, — 1k — (/k))* ', and deduce the known
results for r-free integers.

1. Introduction and Notation. In some recent papers, ([4, 5])
we introduced a generalized class of r-free integers, which we called
the (k, r)-integers. For given integers k, r with 0 <» <k, a(k, r)-
integer is one whose k-free part is also r-free. In the limiting case
when %k = o, we get the r-free integers. It is clear that a(k, r)-
integer is an integer of the form a*b, where a and b are natural
numbers and b is r-free. Let Q,., Q. denote the set of all (%, r)-
integers and the set of all »-free integers respectively. Also let
Q...(x) denote the number of (k, r)-integers not exceeding 2z, with
corresponding meaning for Q,(x). We write 6(Q,,,) for the asymptotic
density of the (k, r)-integers, that is,

B(Qk,'r) = lim M ’
€

oo

(provided this limit exists), and D(Q,,,) for their Schnirelmann density
given by

D@Q,,) = inf %=
n n

We define 6(@,) and D(Q,) analogously. Let +(n) be the characteristic
function of @,, and A(n) be defined by

SM) = ().

It is easily proved (see [3]) that the function ~(n) and \(n) are
multiplicative and for any prime p
la=0(modk),
MpY) =4—1a=7r(modk),
0 otherwise.
Further,
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1.71) S M) Sks)  pog > L
=t L(rs) r

wh ere i the Riemann Zeta function. In a previous paper [5],
we  showe thet

Qu.@) = ZE) 4 B
Lr)
1
whesre ke trm E(x) is 0(x7), for » > 1, uniformly in k. (We
actwaall gie an improved estimate for the error term, but this is

not  reqid here)
It fllows tha

_ Lk
6 Q ) T M
(@) Er)
In hiswewe will show that

0(Qi.r) > D(r)

The  camspdng result for @, was first proved by Rogers [2], and
for €@, Mmillv>1by Stark [6]. We also obtain a lower bound for
D(Q2 .,.), fm which we obtain as a special case a result of Duncan
[1] onalwbmd for D(Q,). The actual value of D(Q,,) is un-
kno~=vn eugt for the case Q,; Rogers [3] proved that

D@y = gg :

2, Theorem,

> D) = CHY(L — S — %(1 - %) '

"Thepwi will be given in two parts, corresponding to the two
resul ts

@ W2 - S - Hi- =)

(2.2) 3(Q: ) > D(Qe.r) -

2o Q1) The case » > 1.
Tt s clear that

Q. =n-x[2],

r

p rarwmgingm al the primes.
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Since
@.m =50 2]),
it follows that

Qk f(n _>...

1M
|
S:]g
| I
l

I'__I
3%

]
\./

a

>

)
N N
(s

M

Hence we have
@, r(n) 1\ my, —1
> Z<a" % a"p’) n
1 - 'n”"

= LR — X77) +

Let
f(x) — ..1__—____x___/_k_ = ..]:. — xl/k"‘l
X
then
’ = _1_ _ _1__ — 1/k—2
fl(x) = " (k 1)9(;
so that
() > 0 if <1 1 )x“”‘"z > =, l.e (1 1) Ve > 1
Thus
> 0 when z > 1
1-— l)" ’
, k
S'(x) 1
< O0Owhen z <

when 2 = (1 — (1/k))~* we get the minimum value of f, which is equal to

(=L 0 e
« k)) <1_%>~k k( k)
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Hence
Qk,r(n) —_ —ry _1_ - _]; k=t
L) > (1 - o) - (1= 3)
and
D(@.) = Lt — S p™) — %(1 - l)“.

For the case » =1,
Qi(n) = [n'¥]
8@ = im %71 — 0 since k= 2.
noe N

D@, = infl®™ 1 _ o .
n
So the result still holds in this case.

REMARK 2.3. The above proof is easily seen to hold even when
k = o. The corresponding result, namely,

D(Qr)>1_ ;p_rr

is due to R. L. Duncan [1].
To prove the result in (2.2), we first obtain the following lemma.

LEMMA 2.4. For any € > 0, we have

(i) EMm) > n**=, for infinitely many integers n ,
(ii) Em) < —nt=<, for infinitely many integers n .

Proof. Let

= (v = g2 = R

Since

k)Y, _ Lk _ L)
S (v =g ) = St S

we have

Es) = 3 v — 58 )~

= 2, (E(n) — En — 1))n™*
=2 Emm — (n+1)7).
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Also, let

s 2L EMm)n™ = Ry(s) ,

2L Emn = By(s) ,

Z pEn=—e g —s=1 — R4(S) ,

5 (ot — Buw—= = Ri(s)
5 (n4m + Bm)n—™ = Rs) -

Now suppose that for all n > n,, E(#n) < n"* . Then the series
Ry(s) converges for a > (1/2r) — ¢ (@ = Re(s)), and all but a finite
number of coefficients of R;(s) are nonnegative. Hence the abscissa
of convergence of R;(s) must be less than or equal to (1/2r) — ¢. Let
«a be its abscissa of convergence, that is a < (1/2r) — e. Note that
(see [2], P. 661)

[ =+ 17 —sn™7 | < [s]|s + 1[n7"".

This implies R,(s) also converges for ¢ > «. But this is false because
R.(s) has singularities on ¢ = (1/2r). Thus we must have

E(n) > /n(llz’r)—s

for infinitely many integers .

Next suppose that for all n > n, E(n) > — n"*"~, then we
consider the series Ry(s), proceed as in (i) and arrive at the same
contradiction.

Proof of the result (2.2). By the above lemma, there are in-
finitely many integers n for which E(n) < 0. For such =,

Qu(n) _ k) . Bm) _ k)
N

which proves the theorem.
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