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ON ITERATED ^-SEQUENTIAL CLOSURE OF CONES
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In this paper it is proved that for each countable ordinal
number a ^ 2 there exists a separable Banach space X con-
taining a cone P such that, if Jx is the canonical map of X
into its bidual X**, then the αth iterated w*-sequential closure
Ka(JxP) of JXP fails to be norm-closed in X**. From such
spaces there is constructed a separable space W containing a
cone P such that if 2 ^ β ^ a, then Kβ{JwP) fails to be norm-
closed in FT**. Further, there is constructed a (non-separable)
space Z containing a cone P such that if 2 S β < Ω, then
Kβ(JzP) fails to be norm-closed in Z**.

1* If X is a real Banach space and F a subset of X**, let iΓ(F)
be the set of elements of X** which are w*-limits of sequences in Y.
Let K0(Y) = Y and inductively let Ka(Y) = K{\J β<aKβ{Y)) for 0 < a
^ Ω, where Ω is the first uncountable ordinal. A cone in X is a
subset of X which is closed under addition and under multiplication by
nonnegative scalars. Our main theorem extends the result of [6] that
if P is a cone in X, then K1(JXP) must be norm-closed but K2{JXP)
can fail to be norm-closed in X**. By contrast it is noted that if S
is a compact Hausdroίf space and X = C(S) and a < Ω, then Ka(JxX)
is norm-closed, even though for example if S is compact, metric, and
uncountable, then Ka(JxX) is not w*-sequentially closed. It is obvious
that for each Banach space X and each subset Y of X**, KΩ(Y) is
^^-sequentially closed and hence norm-closed.

In [7] a Banach space X was exhibited such that K2{JXX) is not
norm-closed. Whether Ka{JxX) can fail to be norm-closed for 2 < a
< Ω is not known to the author. However, in the present paper it
will be convenient to use constructions involving spaces studied in [7].

Section 2 is devoted to a useful relationship between w*-sequential
convergence and pointwise convergence of bounded sequences of func-
tions, § 3 to further study of a space constructed in [7], and §§ 4 and
5 to preparation for and proof of the main theorems.

2 Let S be a compact Hausdorff space, B(S) the Banach space
of bounded real functions on S with the supremum norm, and C(S)
the closed subspace of B(S) consisting of the continuous real functions
on S. If A is a subset of B(S), let L(A) be the set of all pointwise
limits of bounded sequences in A, and let La(A) be defined inductively
by L0(A) = A and La(A) = L(U β<aLβ(A)) for each ordinal a such that
0 < a ^ Ω.

If X is a norm-closed subspace of C(S) and zeLΩ(X), then z is

697



698 R. D. MCWILLIAMS

bounded and Borel measurable and hence is integrable with respect to
each finite regular Borel signed measure μ on S. For each / e l *
there exists a finite regular Borel signed measure μf on S such that

r
f(x) = \ xdμf for e a c h xeX [ 3 , p . 265], a n d b y t h e H a h n - B a n a c h

is

theorem μf can be chosen so that \\μf\\ = | | / | | . If V/ is another finite
regular Borel signed measure on S such that f(x) = I a? cίV/ for each

S r is

zdμf = I sdi^ for each zeL0(X), by virtue of the
s i s

bounded convergence theorem and transfinite induction. Hence a
mapping T is unambiguously defined from LΩ{X) into the space of
real functions on X* by

(Tz){f) = ( zdμf (zeLΰ(X), / e Γ ) .
is

TEOREM 2.1. If S is a compact Hausdorff space and X a norm-
closed subspace of C(S)y then T is an isometric isomorphism from
LQ(X) onto KΩ{JXX), and T maps La(A) onto Ka{JxA) for each subset
A of X and each a ^ Ω.

Proof. For each z e LΩ{X) it is trivial that Tz is linear on X*
and that \(Tz)(f)\^\\z\\\\f\\ for every / e Γ , so that TzeX** and
|| Tz\\ ^ \\z\\. For each t e S let /t(x) = x(t) for all » e X; then clearly

/«G X* with li/^ll ^ 1, and it is easily seen that (Tz)(ft) = 1 zdμft =
«(ί), so that K^lrgllTzllll/JI^IITzll and hence p | | ^ | |T^ | f . Since
T is obviously linear, it follows that T is an isometric isomorphism
from LΩ{X) into X**.

Now let A be a subset of X. Since the restriction of T to X is
Jz, it follows that T[L0(A)] = TA = JXA = KQ(JXA). If 0 < a ^ Ω
and it is assumed that T[Lβ(A)] — Kβ(JxA) for each β < a, then for
each z 6 Lα(A) there exists a bounded sequence {zw} in \Jβ<aLβ(A) which
converges pointwise to z. By the bounded convergence theorem
(Tz)(f) = limn(Tzn)(f) for each / e Γ . Since by assumption {Tzn} c
U <̂ A(JχA), it follows that Tz e Ka{JxA). Conversely, if Fe Ka{JxA)

there exists a sequence {Fn} c \Jβ<oιKβ{JxA) such that jPn > F; the
sequence {Fn} must be bounded [3, p 60], and by assumption there
exists a sequence {zn} c \Jβ<aLβ(A) such that IX = Fn for each n.
Now {zn} is bounded, and if z(t) is defined to be F(ft) for each ί e S it
follows that {zn} converges pointwise to z so that zeLa(A). For every
/ e Γ , (Tz)(f) = limn(Tzn)(f) by the bounded convergence theorem.
Thus F= Tzz T[Lα(A)], completing the proof that T[La(A)] = ίΓα(JχA).
By transfinite induction the theorem follows.

REMARK. If S is a compact Hausdorff space and X is the Banach
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space C(S), then for each a ^ Ω, La(X) is the space of bounded Baire
functions on S of order ^ a and, just as in the special case of a
metric space S [8, p 132], La(X) is norm-closed in B(S) and hence
also Ka{JxX) is norm-closed in X**. If S is a compact metric space
with uncountably many elements then S has a nonempty dense-in-it-
self kernel [1, Ch. 9, p. 34]. Hence for each countable a there is a
subset T of S of Borel order exactly a [4, p. 207], but then it follows
that La(X) Φ La+1(X) [5, p. 299] and hence that Ka{JxX) Φ Ka+1(JxX)
for each countable a.

3* The reader is now referred to the proof of Theorem 1 of [7]
for the construction, for each real c ^ 1, of a Banach space X c
C([0; 3]) having the property that there exists an x°eL2(X) such that
\\x°\\ = 1 but if {yh} is a bounded sequence in LX(X) which converges
pointwise to x°, then lim infJ|2/A|| ^ c. The remainder of the present
paper depends heavily on properties of the space X, and the reader
will occasionally need to refer to [7]. In particular, note that X is
generated by a set {xpq: p, qeω} of piece wise linear nonnegative func-
tions of norm c on [0; 3] and that x° is the pointwise limit of the
sequence {xp} c L^X), where xp is the pointwise limit of {xpq}qeω and
\\xp\\ = c for each p. Each xpq has truncated peaks centered at certain
of the points sui, tυj, 2 + sui where sui = 2~ui and tvj = 2- 2~ί>(l + 2~j)
for u, i, v, j eω and i < 2U. Specifically, xpq(suί) — xpq(2 + sMi) = 1 if
p ;> u, and xpq(sul) = 1 if and only if p ^ u. Further, xpq(tvj) = c if
v ^ p ^ j< P + Q and 0 otherwise. If χ(S) denotes the characteristic
function of the subset S of [0; 3], it turns out that

sp = Z(ίβ^: i < 2*} U {2 + spί: i < 2*}) + cχ({^ : v ^ p ^ j})

and that

%* = X({8Pi: V e ω, i < 2P} U {2 + spί: p e ω, i < 2*}).

LEMMA 3.1. Lβί Q be the norm-closed cone in X generated by
{xpq: p, q £(*)}. Then Q coincides with

QQ = {ΣpΣqapqxpq: apq ^ 0, ΣpΣqapq < oo},

where the indicated summations are over the set co of all positive inte-
gers.

Proof. It is clear that Qo is a cone containing {xpq: p, qeω} and
contained in Q. If {zn} is a sequence in Qo which converges in norm
to some x e X, then each zn has the form zn = ΣpΣqanpqxpq with α w ^
0 and ΣpΣqanpq < oo. As noted in [7] the limit lim%αw = apq exists
for all p, q; indeed, in the notation of [7],
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apq = c~\x{tpp - 2-2p-«-2) - x(tpp - 2-**-^)).

Clearly each apq ̂  0, and if r, s e ω then

Σp^rΣq^sapq — limnΣp^rΣg<sanpq ^ lim%^(su) = x(sn);

hence ΣpΣqapq ^ x(sn) and 5: Ξ ΣPΣqapqxpq e Qo.
Let ε > 0 be given. It follows from [7, p. 1196] that each xpq is

continuous and vanishes at 0 and at 2 — 2"1 and hence that each ele-
ment of X shares these properties. Since spί —• 0, there exists px e ω
such that z(sf) < ε and x(sr) < ε for s' = sPί+ul. Since \\zn — x\\ —>0,
there exists w' such that zn{s') < ε for all n > n'. Thus, by [7],
Σp>PιΣqapq = z(s') < ε and Σp>PίΣqanpq = zn{s') < ε for n > n'. Further,
since tιά—>2 — 2"1, there exists by continuity q1 ̂  ^ such that z(tltqj
< cε and x(t1>q) < cε; hence there exists n" ̂  n' such that zn(tj_ q) <cε
for all n > n". It follows from [7] that

^P^Pl^q>qflPq ^ 2ι p ^ g ^ q>q1-p&pq ~ # ^(^1,^) \ £

and similarly Σp^PlΣq>Q]anpq ^ c"X(ί1)g i) < ε for all n > n". Moreover,
since anpq —> apq, there exists nt ^ n" such that Σp^PlΣq^Ql \ apq — anpq \ < ε
for all n > n^ Hence for n > nx the triangle inequality implies that

11^ zn\\ ̂  \\Σp>Pχlqdpqxpq\\ + I I 2 p > P ι 2 q a n p q x p q \ \
~r \\Z p<,Pι2s q>qι&pqXpq\\ + | | ̂  p^Pι2/ q>qidnpqXpq \\

since | |&M | | = c for all p, q. Thus ||« — zn\\ —•O and therefore » = ^ G
Qo» proving that QQ is norm-closed.

LEMMA 3.2. Let Q, = {Σpbpx
p: bp ̂  0, Σpbp < oo}. Then Lλ{Q) = Q

Proof. Since L^Q) is a norm-closed cone in 5([0; 3]) by [6,
Theorem 1, p. 192] and Theorem 2.1, and since {xv}p c LX(Q), it is
clear that Q + Qi c L^Q). If {zj is a bounded sequence in Q which
is pointwise convergent to some zeLt(Q)f each zn has the form ^w =
ΣpΣqanpqxpq with α%Pί ̂  0 and ΣpΣqanpq < oo. As in the proof of Lemma
3.1, for all p,qeω the limit apq = limnanpq exists. For all p,qxeωy

Σq^qιapq — \imnΣqSq]anpq ^ lim%c~X(ίpp) = cιz(tpp))

hence Σqapq ^ c~ιz{tp^ for each p e a ) . Let 6P = c"^^,) — Σqapq for
each p, and note that all the numbers apq and bp are nonnegative.

For n, peω let ^ n p = Σqanpqxpq and ̂ p = Σqapqxpq + δpCC3'. For each
p, if ί G [0; 3] and t is not of the form spi, 2 + βpί, or tvj with v ̂  p
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^ j , in the notation of [7, p. 1196], xpq(t) = 0 for all sufficiently large
q and hence xp(t) = 0, so that unp{t) > uJt), If t = spi or t = 2 +

n
sPi, then

unp(t) = 2 > w = c-^.ίίpp) • c"^(ίpp) = wp(ί) .

Finally, if v <^ p ̂  j , then

Ή'npV'vj) ~ C^q>3-pQ'npq ^ ̂ (^pp) C^qSJ-p&pq

= c[bp + ί ^ i ^ Λ j = up(tvj),

proving that {unp} converges point wise to up on [0; 3],
For each reo),

Σp^r{Σqapq + bp) = c~ιΣpSrz{tpp)

= c-ι\\mnΣ p^rzn{tpp)

Hence J ^ ^ e Q + Qlβ Let w = z — Σpup; then te; is easily seen to be
a Baire function of the first class on [0; 3] and hence by [8, p. 143]
w must have a point tt of continuity in [2; 3].

At each point of the form t = 2 + sri with i odd, up(t) = up(sn)
for each p ̂  r and hence

2'p<rwwl,(ί) + ΣPzrΣqanpq) - Σpup(t)
= \imn(zn(sn) - Σp<runp(sn)) - Σp^rup(t)
= «(su) - Σpup(sn) = w(sn).

Since the set of such points t is dense in [2; 3], w{t^ = w(su). On the
other hand, it follows from [7] that for each point of the form s = 2
+ s r ί ± 2cr<1 with ί odd, xp?(s) = 0 whenever p ̂  r, and hence

w(s) = limΛ2'J,<rwwp(s) - Σp<rup(s) = 0.

Since the set of such points s is also dense in [2; 3], it follows that
w{t^) — 0 and hence that w(sn) — 0.

For each r e ft) let w r = 2 — Σp<rup. Then w r —• tt; in the norm
topology, and wr is the pointwise limit of {Σp^runp}. Hence

| |w r | | ^ limsupn | |2 r

p 2 ϊ r%Λ 1 ) | | ^ c\imnΣp^runp(sn) = cwr(su)

and consequently

111011 = l im r | |w r | | ^ c limrwr(su) = cw(su) = 0.

Therefore w = 0 and 2 — ^ ^ ^ e Q + Qx, completing the proof of the
lemma.

Note. The last paragraph of the previous proof shows that if
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{zn} is a bounded pointwise convergent sequence in Q, then in the nota-
tion of that proof for each ε > 0 there exist p^n^ω such that ΣP7>PίΣqanpq

< ε for all n ̂  nt. Indeed, given ε > 0 there exists pι such that cwPi(sn)
< ε. Since lira supn\\Σp^Plunp\\ ^ cwPl(sn)9 there exists nγ such that
for each n ^ nλ

^ P^Pl^ q^npq = \^ p^p^np) \^ll) = I I ^ p^p^np I I \ ^

LEMMA 3.3. Let Q2 = {cox°: c0 ̂  0}. Then L2(Q) = LΩ{Q) = Q + Q,

Proof. Clearly Q + Qi + Q2 is a cone containing LX(Q) and con-
tained in L2(Q). To prove the lemma it suffices to show that L(Q +
Qi + Q2) S Q + Qx + Q2 If {zj is a bounded sequence in Q + Qι + Q
which is pointwise convergent to a function z, then each ^% has the
form

2

where yneQ, bnp ^ 0, cn ̂  0, and Jpδ^ < <*>. Since {JSΛ} is bounded,
the diagonal process yields a subsequence {zn.} of 2;Λ such that c0 =
lim. c^ and b = lim^pbn.p exist and bp = lim^^^ exists for each peft).
It is easily seen from [7, p. 1196] that these limits are finite and
nonnegative, that Σpbp ^ 6, and that the sequence {Σpbn.px

p + cn.x
0} is

pointwise convergent to Σpbpx
p + (c0 + 6 — I'pδ^x0. Hence also {yn.} is

pointwise convergent, and by Lemma 3.2 its pointwise limit is in Q
+ QΣ. Since £ is the pointwise limit of {zn.}, it follows that zeQ +

REMARK. It is clear from [7] that the representation of each z
e LΩ(Q) in the form ΣpΣqapqxpq + Σpbpx

v + cox° is unique.

4. Given an arbitrary countable ordinal a ^ 2 and a number c
^ 1, we now construct a separable Banach space Xa containing a cone
P α for which there exists zae La(Pa) such that \\za\\ = 1 but such that
if {wn} is a bounded sequence in \Jβ<aLβ(Pa) converging pointwise to
za, then limn 11 ww 11 ̂  c.

Let B^be the countable set {(2, 1)} U {(β, 7): a ^ /9 > 7 ̂  2}. Then
there exists a one-to-one mapping vα from Da onto 5 α , where Dα =
{1, , 2~1(a2 - 3a + 4)} if a < ω and Da = ωita^ω, such that va(l)
— (2,1). Let U ~ {0} U {w"1: ̂  G Dα} and let Sa be the compact subset
[0; 6] x U of E2. For each real function z defined on Sa and each u
e U, let

zι'u(t) - «(ί, w), ^2'M(i) - z(t + 3, u)
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for t e [0; 3]. Further, let Si be the set of all type — a generalized
sequences s = (sβ: 1 t=ί β ^ a) of positive integers.

Letting xpq be as in § 3 and noting by [7] that xPg(0) = xpq(S) = 0
for p,qeω, we easily verify that for each seSi the function xs de-
fined by

Xs —

x'β'r

0

0

uxSβS

0

if

if

if

if

if

u
u

V,

u

u

>

>

=

>

—

0,1

0,'

0

0,:
n

ur1 ^ ,

w1 >
Si, Vaiυr1) =

= Ce, v)

is an element of C(Sa). Let Xa be the norm-closed subspace and Pa

the norm-closed cone in C(Sa) generated by {xs:seSi} Since Sa is
compact metric, C(Sa) is separable [3, p. 340] and hence also Xa is
separable. Note that ||αsβ|| — c for each seSζ.

For 1 <̂  δ ^ a and s e ^ let z s , be defined on Sa by

tβSr if w > 0, Vα(%-1) = (β,Ύ),β> Ύ> δ

[x° if w > 0, v ^ - 1 ) - (/S, 7), δ ^ /S > 7
^1,0 __ ^2,0 __ Q^

Thus | |sβ.β | | = c if 1 ^ δ < α, but | |s, f β | | = 1 for each se Sζ. In fact,
^s a is independent of s e Sζ and we simply write za instead of zs a.

LEMMA 4.1. For each seSi and 1 ^ δ <̂  a, zs>δ e Lδ(Pa).

Proof. If δ = 1 and s e ^ , then for each q e o) let sq e Si be de-
fined by

8β if 1 < /S £ a.

It is easy to verify that {#sg}~=1 is a bounded sequence in P α converging
pointwise to zsΛ, so that zsιe L^Pa).

Proceeding by transfinite induction, assume that 1 < δ ^ a and
that 28,£ G I/e(Pα) for each seSC and 1 ^ ε < δ. Let s e Sζ be given,
and let tq e Si he defined for each q e ω by

= \sβ if

If δ is not a limiting ordinal, then δ has an immediate predecessor
δ — 1, and it is straightforward to show that the bounded sequence
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{^tδ-ι)7=L in Ls-^Pa) converges pointwise to zS)δ on Sa. On the other
hand, if the countable ordinal δ is limiting, there exists an increasing
sequence {εj~=i °f ordinals whose limit is δ, and it can be verified that
the bounded sequence {stί>βff}JU i n \Jε<δLε(Pa) is pointwise convergent to
z8tδ. Thus the lemma is proved inductively. In particular, our proof has
shown that za, whose norm is 1, is the pointwise limit of a sequence
of elements of norm c in \Jβ<aLβ(Pa).

Note that if 1 ^ δ ^ Ω, ze Lδ(Pa), ί e {1, 2}, and u e U, then z**% e
Lδ(Q) £ LΩ(Q) = Q + Qx + Q2 by Lemma 3.3, and trivially s' 0 = 0.

LEMMA 4.2. Le£ 1 <L δ ^ Ω and z e Lδ(Pa) with

z1'1 = Σp

yeLδ(Pa), where

z1'1 = ΣpΣqapqxpq + Σpbpx
p

yV = 7/2'1 = ^ ( 6 , + 2 Ά g ) ^ + CQX\

y*>» = yι>Q = 0, and uy1*" = y2>% = z 2 ' " / o r eαc/^ ^ G U\{0, 1}.

Proof. The proof will be by induction on δ. If δ = 1, then 2 M

G L^Q) = Q + Qi and hence c0 = 0. There exists a bounded sequence
{wft} in Pa which converges pointwise to z on Sa. Since the finite
linear combinations with nonnegative coefficients of elements in {xs: s
e Sζ) are norm-dense in Pa, each wn can be assumed to have the form

Wn = Σiεωrnix{sni), where each sni e £%, each rni ^ 0, and for each n there
exist only finitely many i such that rni > 0. If tni e £fa is defined for
all n,ieω by (tni)β = (sni)β for 2 ^ β ^ a and (ίn<)i = n> then the
sequence {w'n}, where w'n = ^ίeωr^^^^, is clearly a bounded sequence
in Pa. It will now be shown that \w'n} converges pointwise to y.

For each ue Z7\{0,1}, v^w1) = (β, 7) for some β, 7 such that β>
7 ^ 2 , and hence for each n ^ vrι,

w'ϊ* = urιw'ϊu = Σieωrnix{tni)βUni)^

therefore, w'ϊu(t) —^ vrW{t) = yι>u{t) and w'n
2>u(t) -> &-*(t) = y2>u(t) for

all t e [ 0 ; 3 ] .
Since the situation for u = 0 is trivial, it remains only to consider

the case in which u = 1. Given n, p, qeω let

anpq = Σ{rni: (sn% = p, (sn% = ?}.

Thus each anpq ^ 0, and for each n there are only finitely many pairs
(Pt Q) ί ° r which anpq > 0. Since w\;1 = ΣpΣganpqxpq for each nf it follows
from the proof of Lemma 3.2 and the note following that proof that
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lim^α^ = apq for each p, q; that

\imnΣqanpq = c-ιzι>ι(tpp) = Σqapq + bp

for each p; and that limsuiρnΣ p^rΣ qanpg —>0 asr~>oo. Thus given ε>0,
there exist r and nγ such that Σp^r(Σqapq + bp) < ε/3e and Σp^rΣqanpq

< εβc for all n > n,. Now wϊ1 = Σp(Σqanpq)xpn, and for each t e [0; 3]
there exists w2(£) > nt such that

| ( 2 > w ) ^ ( * ) - (Σqapq + bp)x*(t)\ < -^Γ

for each n > n2(t) and p < r. It follows easily by the triangle in-
equality that

\w'n^(t) - Σp(bp + Σqapq)x*(t)\ < e

for each n > n2(t). Thus

for all t, completing the proof for δ — 1.
Now let δ > 1 and assume that the statement of the lemma is

true for each ordinal ε such that 1 ^ ε < δ. If z e Lδ(Pα), there exists
a bounded sequence {wn} c Ue<j4(fa) which converges pointwise to z.
By the induction hypothesis the sequence {yn} is contained in {Jε<δLe(Pa),
where, if

Wn — 2/ PyqdnpqXpq -f- Σ p0npX + €nX ,

then

y\* = yV = Σp{bnp + Σqanpq)x» + cnx\

and y\:° — y]? — 0 and uy\ιn — y^ — wY for uφO, 1. An easy induction

argument shows t h a t \\f2'u\\ ^ ncfiΛ{sn) for each ueU and / 6 LΩ(Pa),

and from this result it follows t h a t t h e sequence {yn} is bounded. To

see t h a t {yn} converges pointwise to yf note first t h a t yl;0 = y*;0 = 0 =

î,o = 2̂,0 f o r e a c h n% Next, if w Φ 0 , 1 and t e [0; 3], t h e n

uyιΛt) = yT{t) = writ) > z*>u(t) = uy^(t) = y^(t).

For u = 1, since yl;1 = y^1 and y1*1 = y2>\ it remains only to show that
yιΛt) -> y1}ί(t) for each ίe[0;3]. If t is not of the form spi, 2 + spi,
or ίvi with v ^ i, then j/^ίί) = 0 = yι>ι{t). If ί = sPlil or 2 + snh with
ii odd, then

and
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Φ\t) = z^(t) - Σp<PlΣqapqxpg(t);

since w\ιι{t)—>z1Λ{t) and anpq-*apq (as noted in t h e proof of Lemma 3.1),
and since there exists qx such t h a t xpq(t) = 0 whenever p<pλ q > qί9

it follows t h a t y\ιι{t) -> ylΛ(t). Finally, if t = tvj with l^v^j, then

Vϊι(t) = w\;ι(t)

This completes the induction step and hence the proof of the lemma.

LEMMA 4.3. Let 0 £ δ ^ Ω and z e Lδ(Pa), Then z1*" ̂  u,-lz2>u for
each ue U\{0}. If

zι>1 = ΣpΣqapqxpq + Σpbpx
p + cox°

and if q^co, then

z fU ^ u z *u — cΣPΣq<qιapq

for each u^iqz1.

proof. The first assertion is immediate by induction on d. For
the second assertion suppose first that z has the form z = Σseσdsx8 where
σ is a finite subset of £% and ds ^ 0 for each s. Then z1*1 = ΣpΣqapqxpq1

where

Thus ΣpΣq<q]apq — Σ{ds: seσ,s1< g j and hence if w ^ gf1 and va{vrι)
= (/5, 7), then

uΣ8l<u-idsx8β8

as desired.
Next, suppose 2 is the pointwise limit of a bounded sequence {wn}n(Sω

in LΩ(Pa) such that each ww has the desired property; i.e., for each

n ^ qτ\

where

- cΣ,Σq<qιanpq

= ΣpΣqanpqxpq

By the proof of Lemma 3.3 there is a subsequence {wn.} of {wj such
that {ΣPΣqan.pqxpq] is pointwise convergent, and by the note following
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Lemma 3.2 for each ζ > 0 there exist pι and it such that for each i

Since a%.pq —• apq for each p and q, there exists i2 > \ such that for
each i > i2,

^P<Pί^g<gL

anipq < % p<J>ιΣ q<qlapq + ζ .

Hence, for each ί > i2,

ΣpΣq<qιan.pq < Σp<PίΣq<qjapq + (1 + c)ζ

^ J p ^ < f f l α M + (1 + c)ζ.

For each t e [0; 3] and u^qτ\

^ u-^it) - c[ΣpΣq<qiapq + (1 + c)ζ].

Since ζ can be arbitrarily small,

for each u Ξ> gr1, as desired.
The preceding paragraphs provide both the base step and the induc-

tive step for the proof of the second assertion of the lemma.

LEMMA 4.4. Let G be the set of all zeLΩ(Pa) such that zhleQλ

+ Q2. If zeG, then zu% = vrιz2'u for each u e U\{0}.

Proof. In the notation of Lemma 4.3, apq — 0 for all p, q and
hence ΣpΣq<u-vapq = 0. The present result now follows immediately
from Lemma 4.3.

L E M M A 4 . 5 . L δ ( P a ) Π G = 7 , . ,
(LMP) n G) Uω'^δ^Ω.'

Proof. The result is trivial for 8 = 1. Let 1 < δ < ω and assume
the result is true for all ε < δ. Then for each z e Lδ(Pa) Π G it follows
from Lemma 4.4 that zUu = vrιz2'u for each uΦO. Since zeG, it
follows that z is identical with the y occurring in the statement of
Lemma 4.2 and hence is the pointwise limit of the bounded sequence
{yn} c G f l \J^e<δLe(Pa) which appears in the inductive step of the proof
of Lemma 4.2. By the inductive hypothesis

n G) = LULL(P2) n G)
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and hence z e L^^L^P*) ΓΊ G). Conversely, if z e Lδ^{Lv(Pa) Π G), then
z is the pointwise limit of a bounded sequence {wn} c L ^ L ^ P * ) Π G).
By the inductive hypothesis L^L^Pa) Π 6 ) = Lδ^(Pa) Π G. Hence
clearly zeLδ(Pa), and also ^ G G by the proof of Lemma 3.3. Thus
the proof is complete for δ < ω.

Now let ω <^ δ <Ξ> Ω and assume the result is true for all ε < δ.
As in the previous case each z e Lδ(Pa) ΓΊ G is the pointwise limit of
a bounded sequence {yn} c f f f l U ^ ^ C ^ ) * By the inductive hypothesis
{Vn} c Uε<^ε(ί/i(Pα) Π G), and hence z e L^L^P.) n G). Conversely, if
2 6 LsiL^Pa) Π G), then 2 is the pointwise limit of a bounded sequence
{wj c U^ί^βOkiCPα) ΓΊ G). By the inductive hypothesis {wn} c G ί l
UxΛCP*) and hence zeG 0 Lδ(Pa), completing the proof of the
lemma.

LEMMA 4.6. Let {wn} be a bounded sequence in \Jε«χLε(Pa) which
converges pointwise on Sa to the function za defined earlier in the
present section. 1}

w? = ΣpΣqanpqxpq + Σpbnpx
p + cnx°

for each neω, then limnΣpΣqanpq = 0.

Proof. If the conclusion is not true, then as in the proof of
Lemma 3.3 a subsequence {wn.} of {wn} exists such that infi2

f

p2
r

ff an.pq > 0
and such that the limits c0 = l i m ^ , b — Y\m£pbniP, bp = lim^^p, and
ap = ivcίiiΣqan.pq all exist (peω). Since afc1 = x° by definition of za9

the coefficient of each xpq in the unique expansion of z];1 must vanish
and it is easily verified that {Σpbn.px

p + cn.x
0} and {ΣpΣqan.pqxpq} converge

pointwise to Σpbpx
p + (c0 + 6 — Σpbp)x° and Σpapx

p respectively, as in
the proofs of Lemmas 3.3 and 3.2 (note that the symbol bp is used
differently in those two proofs). Hence

z^1 = Σp(ap + bp)xp + (Co + b - Σpbp)x\

Now the uniqueness of the expansion of zι

a

ι shows that ap + bp = 0 for
each p and c0 + b — I'pδp = 1. Since αp and 6̂  are nonnegative, they
must both vanish for each p and hence c0 + 6 = 1. Now

q + Σpbn.p + c%.)

and hence lim^J^a^.^ — 0, contradicting our assumption and thus
proving the lemma.

THEOREM 4.1. If {wn} is a bounded sequence in \Jε<aLε(Pa) which
converges pointwise to za9 then there exists a sequence



ON ITERATED w*-SEQUENTIAL CLOSURE OF CONES 709

{yn} c G Π \Je<aLε(Pa) such that \\yn - w . | | — 0.

Proof. Each w1/ has the form

w\ιι ~ ΣpΣqanpqxpq + Σpbnpx
p + cnx°.

By Lemma 4.2 these exists a sequence {yn} c \Jε<aLε(Pa) such that

y\lι = yiι = Σp(bnp + Σqanpg)x* + cnx\

and 2/*'0 = y1* = 0 and uyT = #*'• = w£' for each w^O,1. Since ob-
viously {yn} c G, if remains only to show that limj|j/n — wn\\ = O

First note that ( ^ - wΛ)ι'° = 0 and (yn - wn)
2'u = 0 for all % =£ 1.

For each real r > 0 there exists by Lemma 4.6 an nreω such
that ΣpΣqanpq < r for all n > nr. For each u Φ 0 there exists gM e ω
such that u ^ g"1 and hence by Lemma 4.3,

u~ywT - cr < t ^ w ϊ - cΣpΣq<quanpq

^ w f ^ vrιv%*

for each ^ > nr Since yi>w = wi'* for each u Φ 1,

for each n > nr and ̂  Φ 0 ,1.
Finally, since z1Λ = z2Λ for each zeLΩ(Pa),

\\(Vn - w ^ MI = IK?/. " w J ι ιll - IIΣp(Σgan p qx» - Σqanpqxpq)\\
< 2cr

for each n > wr.
We have now shown that \\yn — wn\\ < 2cr for each n > nr, com-

pleting the proof of the theorem.

LEMMA 4.7. Let ζbe a countable ordinal, and let y e
Let C = ζ + 1 if ζ < ω and ζ' = ζ i/ ζ ^ α>. // ^ e J7\{0}
= (̂Sf ̂ ) wί*^ /3 > 7 > ζ ;, ίΛ-ê  T/1^ is continuous and hence has the

form yuu = ΣpΣqa
u

pqxpq. If also v e U\{0} and v^v"1) = (T, δ) with β >
Ύ > δ > ζ', then for each reω, Σpapr = Σqa°rq.

Proof. The proof will be by induction on ζ. If y e L.iL^Pa) Π G)
= L^Pa) Π Cr, there is a bounded sequence {wn} c P α which converges
pointwise to y. The sequence {wn} can be chosen so that each wn is
a finite linear combination of elements of fe s e ^ } , and hence there
exists a countable subset σ of ^ such that each wΛ has the form wn =
<£SeAA, where each 6%s is nonnegative and for each n only a finite
number of the bns are nonzero. If i ^ O and va(u~l) = (̂ S, 7), then
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T = uΣseσbnsx8β8r =

where

= p, sr =

Now 2/1'* = vrιyz'u by Lemma 4.4 since ?/GG; hence 2/lM is the point-
wise limit of the bounded sequence {ΣpΣgalpqxpq}. The function y1-* is
in Lt(Q) and hence has the form

V '== 2J p2j qdpqXpq ~T~ 2J p0pX >

by the proof of Lemma 3.2, au

vq = limnα;OT for all p, q and

δp = c~γyι'u{tpP) — Σqapq = limwJ?ffα;M — i ^ α ^

for all p .

Now assume further that va{vrι) = (/3, 7) with 7 > 1, and let λ =
2 if 7 > 2 and λ = 1 if 7 = 2. Then (7, λ) e Ba so there exists vι e
U\{0} such that vjpz1) = (7, λ). Since {^p^gαJPffajPff} and {ΣpΣqa7pqxpq}
are bounded point wise convergent sequences in Q, it follows from the
note following Lemma 3.2 that for each real ε > 0 there exist integers
px and nx such that Σp>PlΣqalpq < ε and Σp>p^Σqa7vq < ε for all n ^ n,.
Since

ΣpΣq>pιalPq = Σ{bns: sr > p j - Σp>PlΣqa7pq < e

for each n ;> ^ , it follows that if / n — Σp^PiΣq^Pιal9qxpqf

Wvr'wT - Λ | | ^ c-Σ{α;Pff: p > px or ? < p j > 2cε

for each n^n,. Since | | / J | ^ llw^wS*!! ^ ^"'sup^H^H for each n,
it follows that for each n^nl9 fn belongs to the compact subset

^u,Pι = {ΣP£PlΣqzPιkpqxpq: kpq ^ 0, Σp^PiΣg^pJcpq ^ ^ " 1 supJIw.H}

of C[0; 3]. By compactness some subsequence {fnj} of {/H} must converge
to an element / of <^u,Pι, and since {u^wl*} converges pointwise to
yuu, it follows that \\yUu - f\\ ^ 2cε. Thus, for each ε > 0 there
exists an / e C[0; 3], depending on ε, such that \\yUu — / | | <£ 2cε Since
C[0; 3] is complete in norm, y1>u e C[0; 3] and must therefore be equal

Lθ 2d p2ι qdpqXpq

Now if Qφv e U and vjy~ι) = (7, δ) with 7 > δ > 1, then for all
w and r,

Since «/liV = ΣPΣqapqxpq1 it follows that
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Σqa% - c~γ *(trr) = lim^v-'wTitrr)
= HmnΣqa

v

nrq = HmHΣpa
v

npr.

On the other hand the bounded sequence {ΣPΣqalPqxpq} converges point-
wise to yltU = Σ PΣ qa

n

pqxpq* By the note following Lemma 3.2, for each
ε > 0 there exist pt and nλ such that Σp>P]Σqalpq < ε for all n^nγ

and also Σp>PιΣqapq < ε. Hence

\Σpa;r - l im n 2>; p r I < 2ε + \Σp^Pia
u

pr - l i m ^ ^ α ^ |
= 2s.

Since ε is an arbitrary positive number,

Σpa
u

pr = \imnΣpa
u

npr = Σqa%.

This completes the proof of the lemma for ζ = 0.
For the induction step let 0 < ζ < Ω, assume the desired result

holds for each η < ζ, and let y, ζ', u, β, and 7 be as in the state-
ment of the lemma. Then there exists a bounded sequence {yn} in
[JrKζLγiLiiPa) Π G) which converges pointwise to y. Since 1 < ζ' < Ί
^ α, there exists ^ e Z7\{0} such that va{v~[ι) = (7, ζ') For each w
there exists ηn<Z such that yneLVn{Ll{Pa) Π G), and it follows that
β > 7 > ζ' > ^ for each w, where »̂ is de fined in terms of ηn as ζ'
was defined in terms of ζ. By the induction assumption y\ιw and 2/n*1

are continuous and have the form ylιu = ΣpΣqalpgxpq and y\;°1 = ΣpΣgal1

pgxPq,
and ΣpalPr — Σqa2rq for all n and r.

As in the proof for ζ = 0, for each ε > 0 there exist ^ and p1

such that 2τp>Plα^7 < ε and Σp>PlΣqά%pq < ε for all n ^ ^ . Hence, since
Σpalpr = Σqa

v^rq for all n and r, it follows that for n^nl9 the distance
between y]ιu and the compact subset

3fn = { I ' ^ ^ I ^ ^ A , : ^ ^ 0, ^ ^ ^ ^ ^ supj|^'u | |}

of C[0; 3] is less than 2εc. Since {ylιn} converges pointwise to yιu, the
compactness of £&Pl implies that Wy1^ — w\\ ^ 2εc for some continuous
w depending on ε. Then the completeness of C[0; 3] implies that yι>u

e C[0; 3] and therefore, since also yι % e LL(Q), that yUu has the form
2J p2j q&pqXpq

If also OΦv e U and v^v-1) = (7, S) with β > 7 > δ > ζ', then i/1'*
and each ^/^ are continuous and have form corresponding to yUu and
y\l% respectively. Further, by the induction assumption, Σpalpr = Σqa°nrq

for all n and r. Hence

Σqa% = c~lt>v{trr) -

=

Exactly as in the last part of the proof for ζ = 0 it is seen that
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Σpapr = UmnΣpalPr. This completes the proof of the induction step
and hence of the lemma.

LEMMA 4,8. If ye LζiL^Pa) Π (?) for some countable ζ and if u, v
e U\{0} with va{u~ι) = (β, 7) and vj^v1) = (β, δ) for certain ordinals

β, 7, δ then in the expression

yuu = ΣpΣqa
u

pqxpq + Σpb
u

px
p + c V

and the corresponding expression for yι v it must be true that yι>u(2~1)
= yί'v(2-1), cu = c\ and bu

p + Σqa
u

pq = bv

p + Σqa
v

pq for each p.

Proof. By Lemma 4.5, yeG. Hence, by Lemma 4.4, yu% = u~ιy2'n

and yι'v = vψ-9.
If ζ = 0, then y is the pointwise limit of a bounded sequence {yn}

of functions of the form yn = ΣseσJ>n8xs, where σn is a finite subset of
S^a and each bns is nonnegative. For each p and w,

w-V.'*(U = cΣ{bns:sβ = p} = vrγs(t9P).

Since {i/J*} converges pointwise to y2 u,

for each p, and hence it follows immediately that

6; + Σqa
u

pq = c - y (tPp) = β"Y' (ίpp)
= bv

p + 2 > ; g

for each p. Since #1(* and yltV are Baire functions of the first class,
cw = 0 = cv Hence

Λ/i.w/o—1\ y (Uu i y nn \ Λ/1.^/9—I\
i/ V^ / — -^pV^P ~T~ ^ qUpq) — t/ \u )

For the induction step let ζ > 0 and assume the statement of the

lemma holds for each η < ζ. By hypothesis there exists a bounded

sequence {yn} in U7<c- ί̂(A(-Pα) Π (?) which converges pointwise to y.

Under the usual notation the relations

np ~r £qanpq — υnp -f <£ganpq,

d — cl, and 7/̂ w(2~1) = 7/^(2~1) must hold for all n and p. It is seen
immediately that yUu(2^) = ?/1 ί>(2-1) and ^^(ίpp) - ylϊl'(ίpp) for all p,
from which the remaing desired relations for ̂ l w and yίιV follow. The
proof is thus complete.

THEOREM 4.2. Let ζ be a countable ordinal, and let ζ' be defined as

in Lemma 4.7. If ye LζiL^Pa) Π (?) and OΦu e U with va(wι) ==. (/3, 7)
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and β > ζ', then yuueQ + Qt.

Proof. If ζ = 0, then yeL^Pa) and hence trivially y^eL^Q),
which is equal to Q + Qi by Lemma 3.2.

If ζ > 0 and the desired result is true for each η < ζ, then 2 ^
ζ' < β ^ a and hence there exists v e U\{0} such that va(v~L) = (β, ζ')
There exists a bounded sequence {yn} in (Jκ^ί(^i(^«) Π G) which con-
verges pointwise to y. Since β > ζ' > rf for each ^ < ζ it follows
from Lemma 4.7 that each ^ is continuous and hence belongs to Q.
Hence y1-* e L^Q) = Q + Qx. Thus in the usual notation for y1>u and
2/lf it follows that cv = 0, but then also cw = 0 by Lemma 4.8, hence
yltU e Q + Qx, and the proof is complete.

The following theorem justifies the claim made at the beginning
of the present section.

THEOREM 4.3. The element zaeLa(Pa) has the property that \\za\\
— 1 but that if {wn} is a bounded sequence in U J S < Λ ( P « ) converging
pointwise to za, then limn\\wn\\ ^ c.

Proof. By Lemma 4.1 and the remarks preceding it we know that
zaeLa(Pa) and \\za\\ = 1. If {wn} is a bounded sequence in \Jβ<aLβ(Pa)
converging pointwise to zaf then by Theorem 4.1 there exists a sequence
{yn} in G Π \Jβ<aLβ(Pa) such t h a t \\yu - wn\\ — 0. Clearly

limΛ||2/J|. Now by Lemma 4.5,

(L^iL.iPa) ΓΊ G)

l
Defining ζ' as in Lemma 4.7, one sees easily that each yn e L
Π G) for some ζw such that a > ζ'n. Now there exists ut e U\{0} such
that va(uτι) = (a, 7) for some 7 < a; for example, take γ = 1 if α =
2 and 7 = 2 if a > 2. Then by Theorem 4.2, yTΎ eQ + Qx = A(Q) for
each ^ . Now z 1 ^ = x° by definition, and hence limn | |yw

lt1*1 | | ^ c by
Theorem 1 of [7]. It follows that

\jmn\\wn\\ = lunn\\yn\\ ^ l i m J | ^ M l | | ^ c.

COROLLARY 4.1. Lei T be the mapping of Theorem 2.1 for the

space Xa, and let Ga = Tza. Then GaeKa(JXaPa) and \\Ga\\ — 1, but if

is α sequence in \Jβ<aKβ{JX(Pa) such that Fn >Ga1 then ]χmn\\Fn\\

Proof. It is immediate from Theorem 2.1 that Ga e Ka{JXcPa) and

IIGa|| = 1. If {Fn} c [Jβ<aKβ(JXaPa) and F Λ — (Jβ, then by Theorem 2.1

the sequence {T-ΛFB} is in \Jβ<aLβ{Pa) and H T ^ ^ H = | |F« | | for each



714 R. D. MCWILLIAMS

n. Now supw 11 T~ιFn \ \ = supn\\Fn\\ < oo since {Fn} is w* -convergent.
For each t e Sa let ft e X* be defined as in the proof of Theorem 2.1.
Then

(T^Fn)(t) = Fn(ft) > Ga(ft) = za(t)

for each t, and hence

= limn\\T~ίFn\\^c.

5. Our main theorems will now be proved through consideration
of product spaces, as defined in [2, p. 31], of spaces of the type Xa.
Since Xa, Pa, and Ga depend on the given number c ^ 1 as well as on
a, the objects mentioned will henceforth be indicated with double sub-
scripts as Xc,a, Pc α, and Gc,a respectively. Recall that if / is a set
and Xs is a Banach space for each s e /, then the product spaces
Πh(I)Xf and ΠmiI)Xϊ* are respectively the dual and bidual of the
Banach space Πeo{ωX8 under the natural identifications.

THEOREM 5.1. For each countable ordinal a ^ 2 let Ya be the
Banach space ΠCQ{ω)Xn2 a and let

Then Ya is separable, and Qa is a norm-closed cone in Ya such that

Ka{JγaQa) is not norm-closed in F** .

Proof. It is evident that Ya is separable and Qa is a closed cone
in Ya. An easy transfinite induction argument shows that for each
n the functional Fn belongs to Ka(JYaQa), where Fn{n) = Gn2,a and Fn{i)
= 0 for all i Φ n. Hence Σ^n~ιFn e Ka(JYaQa) for each positive integer
m, and therefore Σneωn~ιFn e Ka(JYaQa). If {Hk} were a sequence in

\Jβ<aKβ(JγaQa) such that Hk > Σnn~ιFn, then for each i e ω it would
follow that

and

Hk{i) — Σnn~'Fn(i) =

It would then result by Corollary 4.1 that

but then since i is arbitrary the sequence {Hk} would be unbounded
in norm, contradicting the fact that a w*-convergent sequence in Y%*
must be bounded [3, p. 60]. Hence Σ%n~ιFn£ Ka(JYaQa), and the proof
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is complete.

THEOREM 5.2. For each countable ordinal a ^ 2 there exists a
separable Banach space Wa containing a norm-closed cone Ra such that
if 2 <̂  β <L a, then Kβ(JWΰcRa) is not norm-closed in FT**.

Proof. Let Aa = {β: 2 ^ β ^ a) and for each β e Aa let Yβ and
Qβ be as defined in Theorem 5.1. Let Wa = ΠCoUa)Yβ and Ra — Γ\βeAa{w
6 Wa: w(β) e Qβ}. Then the Banach space Wa is separable since Aa is

countable, and Ra is clearly a norm-closed cone in Wa. For each β e
Aa there exists by Theorem 5.1 a sequence {φβ>n} in Kβ(JYβQβ) which
coverges in norm to an element φβ,Qe Y** not in Kβ(JYβQβ). If ψβtn is
defined for each integer n >̂ 0 by ψβ,n(Ύ) = 0 for Ί Φ β and ψβ,n(β) =
0/»,n, it is easily shown that {^lΛ}ne« c Kβ(JWaRa) and {^,J converges
in norm to ψβ0, but that ψβi0$Kβ(JWaRa). Hence for each βeAa,
Kβ(JWaRa) fails to be norm-closed in T7**.

THEOREM 5.3. There exists a Banach space Z contaning a norm-
closed cone P such that if β is a countable ordinal ^ 2, then J£β(JzP)
fails to be norm-closed in Z**.

Proof. The proof is almost identical with that of Theorem 5.2.
Let A={β:2£β<Ω},Z=ΠβoU)Yβ, and P = ΓlβeA{*eZ: z(β) e Qβ}.
Since A is uncountable, the Banach space Z is nonseparable. It is
clear that P is a closed cone in Z. The pooof that Kβ(JzP) fails to
be norm-closed in Z** for each β e A is identical with the corresponding
part of the proof of Theorem 5.2, in which it was shown that Kβ(JW(χRa)
fails to be norm-closed in FF** for each βeAa.
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