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Consider the following nth order nonlinear differential
equation
(1) x™ +f(t,x,x', •..,a?(-1)) = 0 .
All functions considered will be assumed continuous and all
the solutions of (1), continuously extendable throught the
entire nonnegative real axis. A nontrivial solution of (1) is
called oscillatory if it has zeros for arbitrarily large t and
equation (1) is called oscillatory if all of its solutions are
oscillatory. A nontrivial solution of (1) is called nonoscil-
latory if it has only a finite number of zeros on [t0, oo) and
equation (1) is called nonoscillatory if all of its solutions are
nonoscillatory. In this paper, theorems on oscillation and
nonoscillation are presented.

Recently, J. S. W. Wong [8] posed a definition called strongly
continuous with which he proved some theorems to (1) for n — 2.
The proof is based on that of his earlier results [7]. We introduce
more general definition. A function /(£, xt, , xn) is called general-
ized strongly continuous from the left at xίc if f(t,xux2, •••,$») is
jointly continuous in t and xt(i = 1, 2, , n) and for ε > 0 there exist
δ > 0, T ^ 0, and xδ e [xlc — S, xlc] such t h a t for all xt e [xιc — δ, xιe],

and for all xt satisfying | xt — &; | ^ δ (k{ is any constant) for i =
2 . . . T

(1 - e)/(ί, xδ, K , K) ^ f(t, «i, , xn) ^ (1 + «)/(*, Vic K ' , K) >

for all t^n.
Generalized strong continuity from the right is defined anal-

ogousely. A function f(t, x19 , xn) is said to be generalized strongly
continuous if it is generalized strongly continuous both from the left
and from the right. If / — f(t, â ), then our definition is the same
as Wong's one. For example, f(t, xu , xu) = a(t)f(xu •••&») is gene-
ralized strongly continuous.

2* Oscillation and nonoscillation theorems*

THEOREM 1. Assume that n is even and that

(a) f(t, c, k2 , kn) is bounded for any constant c and k{(i = 2, , n)
and xj{t, xl9 , xn) > 0 (xι Φ 0).

Let f(t,xlf • *,xn) be generalized strongly continuous from the left
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for xλ > 0 and generalized strongly continuous from the right for
x1 < 0. Then, a necessary and sufficient condition for equation (1)
to have a bounded nonoscillatory solution is

(2) ί, c, K -- ,K)dt < oo

(c(φ 0) and k^i — 2, , n) are some constants).

Proof. Let x(t) be a bounded nonoscillatory solution of (1), which
must eventually be of one sign. Then we may assume that x(t) > 0
for t ^ T > 0. Since x(t) > 0, then/(ί, x, x'\ , x[n~ι)) > 0 for t ^ T,
we see from (1) and the assumption that cc(£) is bounded:

χ(n) ^ 0 ^ χin-l) ^ 0^ ^(n-2) ^ 0, , »' ^ 0 ,

\imxii](t) = 0, i = 1, 2, •••, n - 1 .

From this and the fact x(t) is positive and bounded implies that a (ί)
tends to a finite limit L > 0. Integrating (1), we obtain for suffi-
ciently large t

(ι — 1)!

(for, i = 1,2, . - . , % - 1) .

In particular,

α (ί) = L - ^ ^ ^ / ( s , x(s), x'(s), , a ' - ^

By the generalized strong continuity of f(t, xlf x2, , xn) implies that
there exist 0 < δ < L, and Lδ e [L — δ, L] such that for all x{ satisfy-
ing \Xi — ki\ <^ δ(i = 2, , n) and for all xL e [L — δ, L] ,

/(ί, xl9 x2, , a?n) ^ —f(t, Lδ, k2, Jcn) .
Δ

Choose T sufficiently large, we can restrict the solution x(t) to
satisfy L - δ ^ x(t) ^ L for all t ;> Γ, and that

for all ί ^ T.
^, we obtain for ί ^ Γ,

0 < i / ( t , Lδ, 0, . , 0 ) < /(t,



OSCILLATORY PROPERTIES OF SOLUTIONS 749

Accordingly, we obtain

C~ [s - ^)%~1/(s, Lδ, 0, , 0)ds .

Since x(t) is bounded, we obtain

(4) ί°°(s - ty~ιf{8, Lδ, 0, , 0)ds

which implies

r~r-ιf(8,Li9o, . . .

Conversely, we show that if (2) holds for some constant c > 0 and
&i(ΐ = 2, * , ^ ) , then there exists a nonnegative continuous bounded
solution to the following integral equation:

/(s, a?0(«), ^(s),...
t

S oo

^ (s - ί)/(s, io(

2!

Xo(t) = c - ^i^zJξ^f(Sy xQ(s), Xι(8),

We define E = {0,1, 2, , n — 1} Let a positive number Γ be chosen
such that

(6) max-
— 1 — ΐ ) !

where ikf(> 2) is some constant.
We define, for AT a positive interger N^ T: for t

and for T
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f(8, Xo,N(s), %UN(S),
)

%n-2fΛt) = &—1 ~ \ (S - ί - "Γ̂
Jί+(l/ V

(8)

*i.*(ί) = h + \
(π — 2)!

e-\
Jii+d/JV) (TO — 1 ) 1

This formula defines xitN{t) for i = 0,1, , n — 1, successively on
the intervals [N - (KIN), N - (K - 1)/N] for k = 1, 2, , ΛΓ(JV - T):
hence x ί lW(ί), ΐ = 0,1, , n — 1, are defined on [T, oo).
For N- (1/N) ̂  ί < oo, we have by (6)

1 "/ ( g ) X o 2 v ( s ) ) . . Xn_UN(s))ds
(n — 1

and also

0 < c - -^r ^ α?0^(ί) g c .

By easy induction, we have

0 ^ \xitN(t) - ki+ι\ ^-£ri = 1, 2, , n - 1 ,
M

(9)
0 < c — ^ Xo,N(t) ̂  c

on the entire interval [T, oo). Consequently, for t ^ T, since / is
generalized strongly continuous and f(t, c,k2, , kn) is bounded, we
have

I #n-l',Λr(ί) I == / ( * + "T7> ̂ 0,^1 * + TT )» * * * » ̂ Λ-l,iv( ί + "T?
\ N \ i\/ V iV

(10) ^ -I + 1 , c , f c 2 , ...,

^ —ίΓ (if is constant),
Δ
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\<At) I - \xi+uΛt) - ki+t\ ^-jL , (i = 0,1, . , n - 2) .

Since the family {xi>N{t)}{i — 0,1, 2, ••, n — 1), is uniformly bounded
and equicontinuous on [T, B] (B is arbitrary), we extract from {xiiN(t)}
(i = 0,1, , n — 1), a uniformly convergent subsequence {#*,*(£)},

lim α>iffc(ί) = Xi , (on [T, J?J, for i = 0, l , n — 1).

For any large number B> T, we may write (8) in the form

t+aik) (n —

where,

(cί = c for i = 0, c? = &ί+1 for i = 1, 2 , n — 1) .

For fixed β we let k tend to infinity in (11) and obtain

liminf φk(B) ̂  (-D' ί- ϊ , + d + (-l) i+1ί
i

t (n — 1 — i)!

^ lim sup φk(B) .

From (6) and (9) and / is generalized strongly continuous, we obtain

0 <: φk(B) = [^-t-WQ^M x0 k(s), , xn^k

(12)

2 Jβ(n — 1 — i)l

By (2), the integral in (12) tend to zero as B—> oo. Thus, we con-
clude that Xi(t) (i = 0,1, , n — 1), is a solution of (5) and also »0(ί)
is a bounded nonoscillatory solution of (1).

THEOREM 2. Assume that n is even and that

*, χu #2, , »»-i, 7) > 0 (#1 =£ 0)> where y is constant.

Lei /(£, α?lf OJ2, , α?Λ-M 7) be generalized strongly continuous from the
left for x1 > 0, and generalized strongly continuous from the right for
xt < 0. Then, a necessary and sufficient conditior for equation

(Γ) x{n) + f(t, x,x'f , x{n~z\ 7) == 0 (7 is constant) ,



752 HIROSHI ONOSE

to have a bounded nonoscillatory solution is

(2') I j V m <>,*,, --;K.l97)dt

and ki(i = 2, , n — 1) are some constant).

Proof. The necessity follows from the necessary part of the
proof of Theorem 1.

Conversely, we show that if (2') holds for some constant c > Ό
and ki(i = 2, , n — 1), then there exists a nonnegative continuous
bounded solution to the following integral equation:

t)f(s, xo(s), , x»-t(s), 7)ds

(n — 1)!

Let a positive number T be chosen such that

(14) max (" ( s ~ ^ " ^ /(s, c, - ^ , ^ _ 1 ; γ)ifo ^ - ^

2) is some constant).
We define, for N a positive integer JV ;> T: for ί ^ N,

for T ^t^N

(n — 2)!

= c-\

As),

— 1)1

As same as the proof of Theorem 1, ^ ^ ( ί ) (i = 0,1, , n — 2), are
defined on [T, oo) and that for i = 0,1, , î  — 3,
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M

and for i = n — 2,

\ /(«, «o^(s), , Xn-zAs), Ύ)ds £ ~ .
It M

Hence the family {xi>N(t}} (i = 0,1, , n — 2) is uniformly bounded
and equicontinuous on [T, B] (B is arbitrary). Using an argument
similar to that given in the proof of Theorem 1, we hove a bounded
nonoscillatory solution of (Γ).

REMARK. For n = 2, Theorem 2 coincides with Theorem 3 in [8].

COROLLARY 1. Suppose that n is even and that

%if(t, Xi, , O > 0 (x1 Φ 0) .

Let f(t, xt, •••jXn) be generalized strongly continuous from the left
for x1 > 0 and generalized strongly continuous from the right for
xι < 0 and that

\tn-f(t, c,k2, , kn)dt
I J*o

= + oo(c(^0) and k^i = 2, , n)

are any constants). Then, every bounded solution of (1) is oscillatory.

Proof. The proof of Corollary 1 follows immediately from the
necessary part of Theorem 1.

COROLLARY 2 [1, Theorem 1]. Consider

(15) x{2n) + p(t)g(x, x', x{2\ , x[2n-ι)) - 0

under the following assumption:

( i ) p: I->R+ = (o, +oo), I=[to, +oo), ^o^O, peC[t0, +oo) ,

(A)

is satisfied;

(ii) #: i22w — i2 = ( - co, oo), ^ ^ f e , x2, , a;2w) > 0 /or x1 Φ 0 ,

continuous on R2n;
then, under the above conditions, every bounded solution of (15) is oscil-
latory.
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Proof. The function p(t)g(xu x2, , x2n) is generalized strongly
continuous. Hence, Corollary 2 is included in Corollary 1.

COROLLARY 3 [4, Theorem 1]. Under the assumption
(a') p(t) is bounded and eventually nonnegative:

x&fa, x2, , x2n) > 0 (xλφ 0), for (x19 x2, , x2n) e R2n ,

a necessary and sufficient condition that (15) have a bounded nonoscil-
latory solution is

(16) \*t2n-ιp{t)dt <

Proof. The function p(t)g(xl9 x2, , xn) is generalized strongly
continuous, hence Corollary 3 is included in Theorem 1.

COROLLARY 4 [4, Theorem 2]. Under the assumption
(/?') p(t) is eventually nonegative and x&ixj., x2, , x2n~i, c) > 0 x1 Φ 0,
for (x19 x2, , #2Λ_-i, c) G -β2w where c is constant, a necessary and suf-
ficient condition that the differential equation

(17) x{2n) + p(t)g(x, x', , x{2n~2\ c) = 0 , n ^ 1 ,

c is constant, have a bounded nonoscillatory solution is (16).

Proof. The proof follows immediately from Theorem 2.

THEOREM 3. Consider

(18) x^ + p(ί)flf(a?) - 0 ,

under the following assumptions:
( i ) p: I-»R+ = (0, +oo), I = [ ί o , +oo), ί o ^ O , ?eC[ί 0 , +oo),
(ii) g: R-+R = (~c>o, -oo), gec'(-oof +oo), ̂ ( a ) > o for x Φ 0,

and continuous on R;
g'(x) Ξ> 0 for |ίc| e [K, +°o) (K is some positive constant), and

S +oo i r-oo i

-η—du < + oo , ___^ W < + oo
£ ^W J-£ ̂ W

for every ε > 0;
£&ew α necessary and sufficient condition that every solution of (18) is
oscillatory is
(19) [+O°t2n-ίp(t)dt= +oo .
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Proof. From Theorem 2, if [^t^pφdt < +°°, then (18) is

nonoscillatory. Hence we conclude that if every solution of (18) is

5 +OO

tf^ptydt = + oo.

S +oo

tf^ptfidt = + oo, then every solution of (18) is

oscillatory in the case n > 1 [1] and n — 1 [6; 7].

THEOREM 4. Assume that n is even and that (β). Let f(t, xu ,
xn-u 7) be generalized strongly continuous from the left for x1 > 0,
and generalized strongly continuous from the right for xλ < 0. Then,
a necessary and sufficient condition for every bounded solution of (1')
to be oscillatory is

(20) I [°tn~f(t, c, k2, , kn_u Ί)dt

(c(Φθ) and k{(i = 2, , n — 1) are any constant).

Proof. Assume that (20) does not hold, then (2') holds for some
c Φ 0 and kt(i = 2, •••, n — 1). Hence by Theorem 2, equation (Γ)
has a bounded nonoscillatory solution, so clearly condition (20) is
necessary. Conversely, let x(t) > 0 be a nonoscillatory solution of (Γ).
In view of the arguments of Theorem 1, x(t) must be nondecreasing
and the limit is finite. Hence the argument in the proof of Theorem 1
is applicable, which shows that leads a contradiction.

THEOREM A [5]. If in addition to the hypothesis of Corollary 3
(or Corollary 4), for some r > 1 and n is even,

(21) lim inf I

then a necessary and sufficient condition that all solution of (15) (or
(17)) be oscillatory is

(22) (V- 'pφdί = + co .

THEOREM B [2]. Consider

(23) x{n) + p(t)g(x, x\ , x{n-ι)) = 0

with n even, and moreover,
( i ) p: I-+R+ = (0, +00) , J = [ ί o , + o o ) , U^0.

( i i ) g: Rn —>R = (— o o , + o o ) , αraZ swcfe ί t o ί Condition (G):

%M%u to* * > «») > 0 /or eueπ/ (a?^ α?2, , xn) e R% with xt Φ 0,
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and for every (xly x2, , xn) e Rn, and every λ Ξ> K ( = fixed
positive constant), g( — xu — xi9 , --#«) = — g(xu x2, , O , cwwZ
#(λ, λx2, , λxw) = Xrg(l, x2, , a?»), where 7 = g/r, g r odd
positive integers relatively prime;

then under any one of the following conditions, all solutions of (23)
are oscillatory:

(a)

(b)

(c)

0 <7

7

7

< 1 ,

— 1 >

> 1 ,

]

s
s

tΐin-ι)p(t)dt

^Γ-'-'pfydt

for

°°tn-]p(t)dt =
*0

- +oo

some ε with 0 < ε < 1

-j- oo .

Kartsatos [2, Remark 3] posed a problem that under what addi-
tional assumptions on the function g, the conditions of Theorem B
are also necessary for the theorem to hold. In case 0 < 7 < 1, the
condition (a) is also necessary for theorem B to hold. When 7 — 1
(this is the linear case), it is well known that condition (b) can not
be necessary. Consider the Euler equation. Thus, we answer the
problem for 7 > 1.

THEOREM 5. In addition to the assumptions of Theorem A,
assume p(t) being bounded. Then (c) is necessary for all solutions of
(23) to be oscillatory.

Proof. As p(t) being bounded, the proof follows immediately
from Theorem 1.

THEOREM 6. Consider the equation

(24) x{n) + p(t)g(x, x\ , x{n~2), δ) = 0 (for n even),

where δ is constant. Then (c) is necessary for all solutions of (24)
to be oscillatory.

Proof. The proof follows immediately from Theorem 2.

REMARKS. Theorem 5 and Theorem 6 are proved also from
Theorem A, since from Condition (G), we see

l^fo, x2, , ^_i)
r

— Γm ' f xx

rg(l, (a?2/^i), • , (Xn-JXi))
r

In case 0 < 7 < 1, Licko and Svec [3] proved Theorem 6 with
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g = X7 (0 < 7 < 1).

The author wishes to express his thanks to the referee for some
very useful comments-
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