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It is proved in this paper that a skew Hadamard matrix
of order 2(q + 1) exists if q = pι is a prime power such that
p = 5(mod8) and t = 2(mod4).

!• Introduction* An Hadamard (H—) matrix is a square matrix
of ones and minus ones whose row (and therefore column) vectors
are orthogonal. The order n of such a matrix is necessarily 1, 2 or
is a multiple of 4. A skew iϊ-matrix is an iJ-matrix of the form

H=I+S,S' = -S,

where I is the identity matrix and Sr the transpose of S. In par-
ticular,

SS'= -S2 = (n- 1)1 .

It has been conjectured that iϊ-matrices and even skew iJ-matrices
always exist for n divisible by 4. Constructions of both types of
matrices have been given for particular values of n and also for
various infinite classes of values (see [1] for the pertinent references).

In [1] D. Blatt and G. Szekeres constructed for the first time a
skew ίf-matrix of order 52. Their construction is summarized in
Theorems 1 and 2 of this paper.

Given an additive abelian group G of order 2m + 1, two subsets
A c G , BczG, each of order m, are called complementary difference
sets in G if

( i ) a G A ==> —a g A, and
(ii) for each de (?, d Φ 0, the total number of solutions (αx, α2) e

A x A, (&!, b2) e B x B of the equations

— &2 = d, ί>! — b2 = d

is m — 1.
We may now state

THEOREM 1. // for some abelian group G of order 2m + 1 there
exists a pair of complementary difference sets A, B, then there exists
a skew H-matrix of order 4(m + 1).

Let G = GF(q) denote the Galois field of order q, where q = pt

and p is an odd prime. For pι — ef + 1 the cyclotomic classes Ci in
G are defined by
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C4 = {r + ί : s = 0,1, . . . , / - 1 } ,

where 7 is a primitive root of G.
We next state

THEOREM 2. Let e = 8 so that pι = 8/ + 1, cmd Zβί / be odd.
Define the sets

A = Co U d U C2 U C8, JB = Co U d U Cβ U C7 .

Suppose that the total number of solution vectors (alf a2) e A x A,
(bu b2)eB x B of

aL — a2 — 1 , 6i — δ 2 — 1

is 4/ — 1. Then A and B are complementary difference sets in G.

In the case pι = 25 Blatt and Szekeres used a root of x2 + x +
2 = 0 as a primitive root and obtained

= {1, 3, α?,

= {1, 2, a?, α? + l , α + 2, £ + 3, 2a?,

There are 11 solutions al together of aι — a2 = 1 and bι — δ2 = 1
given by

(Λ l, α2) = (a; + 1, a;), (a;, x + 4), (3a? + 1, 3a?), (3a? + 4, 3& + 3),

(3a?, 3^4-4), (4a? + 3, Ax + 2) ,

(δx, 62) - (2, 1), (a? + l , a?), (a?+ 2, a?

In view of Theorem 2 A and B are complementary difference sets.
Hence Theorem 1 yields a skew if-matrix of order 52.

Blatt and Szekeres state in their paper that there seems to be
no obvious generalization of this construction. The purpose of the
present note is to prove the following theorem.

THEOREM 3. Suppose that the prime power pι in Theorem 2 is
such that p = 5(mod8) and t ~ 2(mod4). Then for each deG, d^O,
the total number of solutions (al9 α2) e A x A, (bu b2) e B x B of the
equations

( 1 ) at — a2 — d, bt — b2 — d

is 4/ — 1. Accordingly A and B are complementary difference sets
in G.

Theorem 3 in conjunction wi th Theorem 1 produces an infinite
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class of skew iϋΓ-matrices. For p* = 52,132, 293, the corresponding
orders of the skew matrices are 52, 340,1684, . Except for the first
these orders do not seem to have been obtained previously.

2* Proof of Theorem 3* Since p = 5(mod8) and t = 2(mod4)
the integer / in the equation p% = 8 / + 1 is odd. Since 74/ = —1 it
follows that — l e C 4 . Consequently, if ceCi9 then — ceCi+i, and if
aeA, then —a&A. Condition (i) in the definition of complementary
difference sets is thereby satisfied.

For fixed i and j the cyclotomic number (i,j) is defined to be
the number of solutions of the equation

+ 1 = (zt 6

where 1 = 7° is the multiplicative unit in G. That is, (i, j) is the
number of ordered pairs s, t such that

(0 ^ β, t ^ / - 1) .

For / odd the numbers (i,j) satisfy the relations (see [2], p. 394)

(ij) = U + 4, i + 4) = (8 - i,j - i) .

These lead to the following array in which the 64 constants (i,j),
ifj = o, 1, •••, 7 (mod8) are expressed in terms of 15 where (i,j) is
in row i and column j .

0 1 2 3 4 5 6 7
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J
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I
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J

B

J

0
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K

N

0

N

M

G

L

D

L

M

I

J

K

L

F

E

F

G

H

A

B

C

D

F

D
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I
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L
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L

C
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0

N

M

H

M

K

B

J

0

0

I

Following the methods of Dickson [2] Emma Lehmer [3] derived
explicit formulas for these cyclotomic numbers. The result are
summarized in [4, p. 79] as follows.

LEMMA. The cyclotomic numbers for e = 8, / odd, are given by
the array (3), and the relations:



820 ALBERT LEON WHITEMAN

I. If 2 is a fourth power in G II. If 2 is not a fourth power in G
64A = q - 15 - 2x 64A = q - 15 - 10a? - 8α
645 = g + 1 + 2x - 4a + 16y 645 = g + 1 + 2x - 4α - 166
64C = q + 1 + 6x + 8a - 16?/ 64C - g + 1 - 2x + I63/
64/) = q + 1 + 2α; - 4a - 16?/ 642) = q + 1 + 2x - 4α - 166
64^ = 9 + 1 - 18a? 64^ = q + 1 + Qx + 24α
64F = g + 1 + 2x - 4a + 16y 64F = g + 1 + 2x - 4α + 166
64G - q + 1 + 6# + 8α + I63/ 64G = q + 1 - 2x - lβy
64H = q + 1 + 2x - 4a - 16y 6AH = q + 1 + 2x - 4a + 166
64/ = q - 7 + 2x + 4α 64/ = g - 7 + 2x + 4α + 16?/
64J = g - 7 + 2x + 4α 64/ = g - 7 + 2x + 4α - I62/
64iΓ - g + 1 - 6x + 4α + 166 64ίΓ = q + 1 + 2x - 4a
64L = g + 1 + 2x - 4α 64L = g + 1 - 6x + 4α
64M = g + 1 - 6# + 4a - 166 64Λf = g + 1 + 2x - 4α
64iSΓ = g - 7 - 2a; - 8α 64i\T = g - 7 + 6#
640 = g + 1 + 2x - 4α 640 = g + 1 - 6x + 4a
where x, y, a and 6 are specified by:

( i ) q = x2 + 4y2, x = 1 (mod 4) is the unique proper represen-
tation of g = pt if p ΞΞ 1 (mod 4); otherwise

g = ( ± p ί / 2)2 + 4 02; i.e., x = ± ptl2, y = 0 .

(ii) q = a2 + 2b2, a = 1 (mod 4) is the unique proper represen-
tation of g = pt if p = 1 or 3 (mod 8); otherwise

q = (± p*ι*)* + 2 02; i.e., a = ± p ί / 2, 6 - 0 .

The signs of 2/ and 6 are ambiguously determined.
In view of (2) the cyclotomic number (i,j) may be expressed as

the number of solutions of the equation

( 4 ) y-x = l (yeCj9 xeC,) .

If deCk, then each solution of (4) yields a solution of

Vl - Xι = d (y, e Cj+k, x, e Ci+k) .

It follows that if deCk, then there are (i — k, j — k) solutions of
the equation

y - χ = d (yeCjfxeCi) .

This enables us to determine how often each difference arises from
sets composed of given cyclotomic classes. The set A of Theorem 3
is the union of the classes Co, Cu C2, C3. Here we find that the
number Nk of solutions of y — x = d with y, x e A and deCk is given
by
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Nk = (-ft, -ft) + (1 - ft, -ft) + (2 - ft, -ft) + (3 - ft, -ft)

+ (-ft, l-ft) + (l-ft, l-ft) + (2-ft, l-fc) + (3-ft, 1-ft)
( 5 ) + (-ft, 2-ft) + (l-ft, 2-ft) + (2-ft, 2-fc) + (3-ft, 2-ft)

+ (-ft, 3-ft) + (l-ft, 3-ft) + (2-fc, 3-fc) + (3-ft, 3-ft) .

The set B is the union of the classes Co> CΊ, Cβ, C7. The corresponding
number iV& of solutions oί y — x = d with y, xeB and ώe C* is

Nί = (-ft, -ft) + (1 - ft, -ft) + (6 - ft, -ft) + (7 - ft, -ft)

+ (-ft, l-ft) + (l-ft, l_ft) + (6-ft, l-ft) + (7-ft, 1-ft)

' + (-ft, 6-ft) + (l-fc, 6-ft) + (6-ft, 6-ft) + (7-ft, 6-ft)
+ (-a?, 7-ft) + (l-ft, 7-ft) + (6-ft, 7-ft) + (7-ft, 7-ft) .

Since every solution of y — χ = d with T/, &G A and deC* yields a
solution of x — y = — d, and since — 1 e C4, it follows that JV* =
NM(k = 0,1, 2, 3). Similarly, JVfc' = Ni+A(k = 0,1, 2, 3). Furthermore,
since αeA=>76αβjB and beB=>72beA, we have also Nk+2=Nk(k=
0,1, 2, 3). Hence we find that

No + Nί = N2 + JVί = N4 + 2V; - iV6 + iW ,

The application of the lemma to the evaluation of Nk and Nk

depends upon whether or not 2 is a fourth power in G We now
show that 2 is not a fourth power in G when p = 5 (mod 8) and t =
2 (mod 4). It is convenient to put r = (pt — l)/(p — 1). The number
7 is a generator of the cyclic group of nonzero elements of GF(p*),
and hence Ίr = # is a generator of the cyclic group of nonzero ele-
ments of GF(p). Since (2\p) = —1 the exponent ft in the equation
gk = 2 is odd. Furthermore, since r = p*"1 + p*~2 + + 1 = t = 2 (mod 4),
the exponent rk in the equation yrk = 2 is = 2 (mod 4). Therefore 2 is
not a fourth power in (?.

In view of (7) it suffices to evaluate No, Nί and JVi, N[. From
(5), (6) and the array (3) we get

No = AINJBJOOCKNODLMI,

Ni = AINJBJMKGLNMHMOI,

N, - JAINKBJOLCKNIHMK,

N[ = JAINLFJKMGONIHOO ,

where, for brevity, we have omitted the plus signs between adjacent
letters. Applying Case II of the lemma we may now derive the
following formulas
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= 16q - 48 - 8x + 8α + 1% - 326 ,

64i\Γ0' = 16g - 48 + 8x - 8a - lβy ,

64JVΊ = 16g - 48 + 8a? - 8α + 16y ,

tfί - 16g - 48 - 8x + 8α - lβy + 326 .

Consequently

64(iVo + Nί) = 32g - 96 - 326, 64(2Vi + N() = 32c? - 96 + 326

Thus JV0 + Nί and Nt + N[ are equal if and only if 6 = 0. State-
ment (ii) at the end of the lemma guarantees that 6 = 0 when p =
5 (mod 8). It follows that for each deG, d=£θ, the total number of
solutions of the equations (1) in Theorem 3 is (q — 3)/2 = 4/ — 1.
The proof of Theorem 3 is thus complete.
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