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ON SPLITTING IN HEREDITARY TORSION THEORIES

ROBERT L. BERNHARDT

Let (J^~, J?~) denote a hereditary torsion theory for the
category of modules over a ring R. In this paper the splitting
of projective modules is studied, and it is shown that this is
not equivalent to the splitting of quasi-projective modules.
In addition, situations arising from the class of torsion modules
^~ (or the class of torsionf ree modules J^~) being contained in
the injective or in the projective modules are considered, and
several conditions sufficient for an especially strong form of
splitting are given. Finally when J7~ is closed under injective
envelopes the following is shown: every module splits if R is
an artinian generalized uniserial ring, and projective modules
split if R is a QF-2 ring.

The term "ring" will mean an associative ring with unity 1, and
all modules are assumed to be unitary left modules. We denote the
category of all modules over a ring R by R^£\ Dickson [6] defined a
torsion theory for Rί^f to be a pair (^", J^) of classes of modules
satisfying the following:

(a) jT" n &~ = 0;
(b) ^" is closed under homomorphic images and &~ is closed under

submodules;

(c) For each module M there exists a (unique) submodule Mt e
^ such that M/Mt e ^~.

A torsion theory (^", ^") is said to be hereditary if ^~ is closed
under submodules, and stable if ^ is closed under injective envelopes.
We remark that from (b) above it is clear that Horn (T, F) = 0 for
all T e y and all F G ^ ; also Dickson has shown that ^ is closed
under submodules if and onlf if J?~ is closed under injective enve-
lopes. In this paper we shall always be concerned with hereditary
torsion theories.

If J7~ is a hereditary torsion class, then Gabriel [8] has shown
that ^~ is uniquely associated with an (topologizing and) idempotent
filter

F{^) = {L s R\L is a left ideal of R and R/L e ^}. Moreover,
is a torsionfree class for some torsion class ^ if and only if

contains a unique minimal left ideal (see [9]); in this case Jans
has called J7~ a torsion-torsionfree (TTF) class, and we shall call
(^", &~) and (^ , _̂ ~) the torsion theories associated with _^"\ If R
is a right perfect ring, Alin [1] has shown that every hereditary torsion
class for R^ί€ is a TTF class.
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If (^", J?~) is a hereditary torsion theory for B ^ and if Me
, we say that M splits provided M = Mt\ φ Mf; we shall call

splitting if every module in B^f splits. We say that
is centrally splitting provided ^~ is a TTF class with asso-

ciated torsion theories (^", ^ " ) and ( ^ , JΓ), and M = If* 0 Mc (i.e.,
jlf is the direct sum of its two torsion submodules) for every Me B^#.
Centrally splitting is clearly a strong form of splitting; the interested
reader may see [5] for more information on this topic.

1* Splitting in projective modules* In this section we shall
study the dual for projective modules to the following result of
Armendariz [3] on the splitting of injective modules. We denote the
injective envelope of a module M by E(M).

THEOREM A (Armendariz). If (J7~, ̂ ) is a hereditary torsion
theory, then the following are equivalent:

(1) j^Γ is stable;
(2) Every injective module splits;
(3) Every quasi-injective module splits;
(4) E{Mt) = E(M)t for every

If N is a submodule of the module M, we call N invariant in M
provided that f(N) £ N for every endomorphism / of M. We call
N small in M provided that if K is a submodule of M and if K + JV
= Mj then K — M. We shall say that a class ^ of modules is closed
under protective covers provided that whenever Me^ has a projec-
tive cover P(M), then P(M) e <£f.

THEOREM 1.1. Let (^, J?~) be a hereditary torsion theory for
such that every torsionfree module has a protective cover. Then

the following are equivalent:

(1) j ^ ~ is closed under protective covers;
(2) Every protective module splits.

Proof. (1) —> (2): Let Q be a projective module, and let π: P(Q/Qt)
—»Q/Qt be the projective cover of Q/Qt. Let n be the natural epimor-
phism of Q onto Q/Qt. By [4, Lemma 2.3] there exists a monomor-
phism h: P(Q/Qt) —> Q such that nh = π and such that Q = Imh + Q',
where Qf s Ker n — Qt. But Imh is torsionfree; so that Imh f]Qt = 0
and Q = Imh 0 Q,

(2) -> (1): Choose J l ί e , / " , and let π: P(M) - > M be the projective
cover of M. Then P ( M ) f s K e r π , so that P ( I ) { is small in P(M).
But P(M) splits by hypothesis; thus
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EXAMPLE 1.2. The splitting of protective modules does not imply
the splitting of quasi-projective modules in left artinian generalized
uniserial rings.

Let K be a field, and let R be the ring of 4 x 4 upper triangular
matrices over K. Let

1= i
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0

0
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0
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0

ai3 e K

then / is an idempotent, two-sided ideal of R. Thus by a result of
Jans [ 9 ] , / = ( I e R^\IM = 0} is a TTF class. Further R e J ^ , so
that every free module is torsionfree. Hence every protective module
is torsionfree, and thus splits. Now let ei3 denote the matrix with 1
in the ith row and j t h column and 0 elsewhere, and let J — Reu. Then
/ is a two-sided ideal of iϋ, and hence M = ReJJeu = ReJJ is quasi-
projective and indecomposable. But M.QJ^~, and Reu/J^ Mt. Thus
ilίi is a nontrivial submodule of M.

We next turn our attention to the quasi-projective cover; this was
introduced in [12], and there it was shown that a sufficient (but not
necessary) condition for the quasi-projective cover of a module M to
exist is that the projective cover of M exist.

PROPOSITION 1.3. Let M be a quasi-projective module which has a
projective cover. If N is an invariant submodule of M, then the module
M/N is quasi-projective.

Proof. Let π: P(M) —* M be the projective cover of Jlf, and choose
an endomorphism / of P(M). By [12, Proposition 2.2], / induces an
endomorphism g of M such that gπ = τr/ Let ϋΓ = π~1(N)) then
7Γ/(JE) - gπ{K) = 0(iNO s iSΓ, and hence / ( # ) c TΓ̂ iNΓ) = K. We have
shown that K is invariant in P(M); thus by [12, Proposition 2.1] we
have P(M)/K=M/N is quasi-projective.

THEOREM 1.4. Let M be a module with a projective cover, let
π'\ QP(M) —> M denote the quasi-projective cover of M, and let {J7
be a hereditary torsion theory for R^£'. If Me J?~, then QP(M) e

Proof. Let π: P(M) —> M denote the projective cover of M; by
[12, Propositions 2.6, 2.1 and 2.2] we have that QP(M) ~ P(M)/X,
where X is the unique maximal invariant submodule of P{M) con-
tained in Ker π. Let n denote the natural epimorphism of P(M) onto
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QP(M). Since Kerw <Ξ Kerπ, we have that Kern is small in P{M),
and thus n: P(M) —> QP(M) is the protective cover of QP(M). Further
QP(M)t s Ker πf since i l ί e ^ " , and also QP(M)t is invariant in QP(M).
Hence QP(M)/QP(M)t is quasi-projective by Proposition 1.3; thus QP{M)t

= 0 by condition (3) of the definition of the quasi-projective cover in
[12].

2Φ Classes of projective and injective modules* Let
be a hereditary torsion theory for R^€. In this section we investigate
the following condition:

J7~ is stable and all torsionfree modules are injective. This has
been studied previously in [3] (also see [2] for the special case that

is the Goldie torsion class), where it was shown to imply that
, J?~) is splitting. In Theorem 2.2 we shall give a statement

equivalent to this condition, and, in addition, we shall show that it
implies the much stronger result: (J7~, ̂ ~) is centrally splitting.
Finally we shall obtain a dual to Theorem 2.2.

LEMMA 2.1. Let (^~, J^~) be a hereditary torsion theory for R^f,
let R = i?i 0 K, and let J^~ be closed under homomorphic images.
Then R = Rt + K{ring direct sum), ^ is a TTF class, and (Jf~, ^~)
is centrally splitting.

Proof. Since right multiplication by an element of R is a left
i£-homomorphism on K, and since j ^ ~ is closed under homomorphic
images, if is a two-sided ideal of R and R = Rt + K.

By [5, Theorem 1] it now suffices to see that J7~ is a TTF class.
Choose L e F(^~); then K Π L e F{^~), and hence R/K f)Le^~. Thus
K/K f]Le JΓ. But K-+K/K Π L -> 0 is exact and KeJ?~; thus K/K
Π L e ^ Π ̂  — 0 and K = K Π L g L. We have shown that K is
the unique minimal ideal in F(j7~); thus ^~ is a TTF class.

THEOREM 2.2. If {J7~, ^~) is a hereditary torsion theory for R^f',
then the following are equivalent:

(1) ^~ is stable, and all torsionfree modules are injective;
(2) J^ is closed under homomorphic images, and all torsionfree

modules are projective;
(3) ^ is dossed under homomorphic images, R — Rt + K (ring

direct sum), and K is a semi-simple ring with minimum condition.
In addition, whenever (1), (2), and (3) are true, then j^Γ is a TTF

class and (^7~, J^) is centrally spilitting.

Proof. (l)-»(3) follows from [3, Theorem 3.2].
(3) —• (2): If M is a torsionfree module, then RtM = 0 and hence
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M is a projective ϋΓ-module. But now M is a direct summand of a
free Z-module, and hence M is a direct summand of a free lϋ-module.
Thus M is protective as an i2-module.

(2)—>(1): Choose M e / " , and let n be the natural epimorphism
of E(M) onto E(M)/E(M)t. Since this torsionfree module is projective,
there exists a monomorphism / from E(M)/E(M)t into E(M) such that
E(M) = Ker w φ l m / . But Λf s Ker n and Λf is large in E(M); hence
Im / = 0 and E(M) = 2?(Λf)t e J^~. Thus J ^ is stable. Now choose
Me^; then E(M)e^~ and so the module E(M)/M is torsionfree,
and hence projective. Thus E(M) ^ J i ίφ E(M)/M. This proves that
ilί is injective.

The final statement follows from Lemma 2.1.

THEOREM 2.3. Le£ (J7~, ά?") he a hereditary torsion theory for R^//
for which cyclic torsionfree modules have projective covers) the following
are equivalent:

(1) _^ r is closed under projective covers, and every torsion module
is projective;

(2) j^~ is closed under homomorphic images, and every torsion
module is injective)

(3) j^~ is closed under homomorphic images, R = Rt + K (ring
direct sum), and Rt is a semi-simple ring with minimum condition.

In addition, whenever (1), (2), and (3) are true, then ^~ is a
TTF class and (J7~, ^) is centrally splitting.

Proof. (l)—»(3): Choose NeJ^, and let L be a homomorphic
image of N. Since Lt is projective, there exists a monomorphism /
from Lt to N. But Rom(Lt, N) = 0; thus Lt = 0 and L e ^ . Thus
j^~ is closed under homomorphic images.

Since R/Rt is a cyclic module, it has a projective cover π: P(R/Rt)
—> R/Rt, and P(R/Rt) e ^ by hypothesis. If n denotes the natural
epimorphism from R onto R/Rt, then there exists a homomorphism
/ : P{RjRt) -> R such that R = Im / + Ker n = Im / + ie t. But Im /
G ̂ ^ , so that J2t Π Im / = 0 and i? = Rt φ Im / . Thus R = Rt± K

— and we also get the final statement of the theorem — by Lemma
2.1.

Finally, it is easy to see that Rt is a completely reducible ring
since every torsion module is projective; this is equivalent to saying
that Rt is a semi-simple ring with minimum condition.

(3)—>(2): If Me^, then KM = 0 since ^ is closed under
homomorphic images. Hence M is an injective J2rmodule, and, by
Baer's Lemma, it is easy to see that M is an injective iϋ-module.

(2) —> (1): Let Me &~ have a projective cover π: P(M) —> M; then
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P(M)t is injective and P(M) = P(M)t 0 P \ Further, Kom(P(M)t, M)
= 0 and thus P(M)t S Ker TΓ. Hence P(Af)t is small in P(ilf), and
P(M) — Pf e ^ . Thus ^~ is closed under projective covers.

Since Rt is injective, we have R = i ^ 0 iΓ. Thus, by Lemma 2.1,
we have that R = Rt + K. Since ^ is closed under homomorphic
images, one can easily see that Me^~ if and only if KM = 0. But
if every iϋ rmodule is injective, then every iϋ rmodule is projective.
Thus every torsion i?-module is projective.

3. Stable torsion theories* In [5] the following result is given;
its proof depends strongly upon the dualities present in quasi-Frobenius
rings.

THEOREM B. Let R be a quasi-Frobenius ring and let (^
be a hereditary torsion theory for R,y/. The following are equivalents

(1) jjΓ is stable;
(2) (^", _^~) is splitting;
(3) (^~, ^") is centrally splitting.
It is easily seen that the implications (3) —> (2) —• (1) are always

true, regardless of the type of ring involved. We are motivated to
examine the remaining implications in types of left artinian rings
more general that the quasi-Frobenius ones, especially since Fuller [7]
has shown that QF-3 rings possess dualities somewhat similar to those
in quasi-Frobenius rings.

THEOREM 3.1. Let R be a left artinian generalized uniserial ring,
and let {^', j^~) be a hereditary torsion theory for R^/ί. Then J^Γ
is stable if and only if (J7~, J^) is splitting.

Proof. We need only consider the case where J^Γ is stable. Now
every module M is a direct sum of indecomposable cyclic submodules,
and each of these submodules is a homomorphic image of a left ideal
Re where e is a primitive idempotent of R [10]. But each such Re
has a lattice of submodules which is a finite chain, and thus every
homomorphic image of an Re has a lattice of submodules which is a
finite chain.

If L is an indecomposable cyclic submodule of ikf, then by the
preceding its socle, denoted soc(L), is simple. Thus either soc(L) e
J7~ or SOC(JL) G ̂ . But soc(L) is large in L, so that L is contained
in the injective envelope of soc(L). By hypothesis either £r(soc(L)) e
J7~ or £'(soc(L)) G ̂  thus either L G J7~ or L e ^ Hence M splits.

EXAMPLE 3.2. Splitting does not imply centrally splitting in left
artinian generalized uniserial rings.
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Let K be a field, and let R be the ring of two by two upper tri-
angular matrices over K. Let

T
a b

o 0

then / is an idempotent, two-sided ideal of R. Thus by Jans [9],

= 0}

is a TTF class with associated torsion theories (j^~, ̂ Q and
where

, iNΓ) = 0 for all Γe J Π and
, Γ) = 0 for all Te^}

= {LeB^C\IL = L).
Clearly (^, J7~) does not split, since Rc — I is not a direct summand
of R. Hence ^~ is not centrally splitting.

Note that F(^) = {/, R}; thus for MeR^, Mt = {xeM\(0: x) e
F{^r)} = {x e MI / s (0: a?)}, where (0: a?) = {r e i21 rx = 0}. Since I is
the only large proper left ideal of Ry we see that Mt is the singular
submodule Z(M) of M. Also Z(R) = 0, so that ^ is the Goldie —
and 2£(JR) — torsion class (see [1] and [9] for an explanation of these).
It is well-known that the Goldie torsion class is stable; thus (^", ^~)
splits by Theorem 3.1.

As an aside, we note that the class ^ above is hereditary but is
not stable. Also we remark that Teply [11, Propositions 4.5 and 4.7]
gives several necessary and sufficient conditions for splitting to imply
centrally splitting.

PROPOSITION 3.3. Let R be a QF-2 ring, and let (^~, ^) be a
hereditary torsion theory for R^£. If ^ is stable, then every pro-
tective module splits.

Proof If e is a primitive idempotent in R, then soc(ϋJe) is both a
simple module and is large in Re. Hence Re is contained in the in-
jective envelope of soc(J?β), and thus either ReeJ7~ or ReeJ?~. But
any protective module P over a left artinian ring R is isomorphic to
a direct sum of modules Rea, where each ea is a primitive idempotent
of R. Thus every protective module splits.

If ^~ is a stable hereditary torsion class for a QF-2 ring, then,
by Theorem A and Proposition 3.3, every quasi-injective and every
protective module splits. It seems reasonable to conjecture that every
module will split, and in fact we have been unable to find examples
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to the contrary.
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