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The purpose of this note is to show that if v is an
element whose suspension is nonzero, and if w is dual to v,
then the transpotence ¢,(v) is defined and nonzero if and only
if the k-Massey product {(u)* is defined and nonzero.

We wish to thank Dr. Samuel Gitler for a helpful conversation
on this material.

1. Preliminaries.

1.1. The Cobar Comnstruction: (Adams [1]). Let C be a simply
connected DGA coalgebra over K with co-associative diagonal map
where K is a commutative ring with unit. The Cobar Construction
F(C) is the direct sum of the n-fold tensor products of the desuspen-
sion of C = Ker (¢) where ¢: C — K is the augmentation. Suppose C
has a differential {d,: C, — C,_,}. A typical element is a linear com-
bination of elements of the form

v=s5"c) Q- Qs7THe,) = e |- ]el
where x hf.s bidegree (—n,m) and m = >, degree (¢;). The differ-
ential in F(C) is defined on elements of bidegree (—1, *) by
dle] = [—de] + 3 (=1 [e/ | /]
where

Ae)=e@R@L+1Qc+ Se/ Qe

4: C— C& C being the diagonal mapping of C. The differential is
extended to all of F(C) by the requirement that F(C) be a DGA-
algebra.

If C has a differential of degree +1 instead of —1, we no longer
ask that C be a simply connected but only connected, and the element
[e.]+++]e,] is assigned bidegree (n, m).

1.2. The Bar Construction. Let A be a connected associative
DGA algebra over K. Let ¢: A— K be the augmentation. Let
A =ker ¢. Then the Bar Construction B(4) is the direct sum of
the n-fold tensor products of the suspension of A. Let

{d.: A, — A,_}
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be the differential in A. B(A) is bigraded by assigning the element
[a,] +++|a,] degree (n,m) where m = 3\~, deg a;. B(A) has a dif-
ferential d = d; + d; where

Al | =+ | @) = 5 (=1*fa,| -+« |agu| -+« |a]

di(la,| -+ la,]) = ;:ll(—l)“”“”[axl e |oa;] --- @,
where
u(7) zi—i—kZi,deg o .

We also mention that [a|.-- (k) ---]a] is v.a], the kth divided
power of [a].

If instead of the above the differential of A has degree +1, we
put the bidegree of [a,|:--|a,] to be (—n, m). In this case we will
always assume A is simply connected.

1.8. The Suspension Map. In the case of the Bar Construction
the suspension map o: H,(A) — H,(B(A)) is represented by a — [a].
In the case of the Cobar Construction, o: H,(PA) — H.(F(4)) is
represented by @ — [a] where PA is the subcomplex of primitive
chains.

DEFINITION 1. The Massey Product {u)*. (Kraines [6]).
Let A be a DGA algebra over K. Suppose a,, --, a,_, are given
in A such that a, is a cycle (or cocycle) and that

aan :nil(_l)deg or ArQp—y for n = 2! "'yk - 1.

Suppose u is represented by a,. Then the Massey Product {u)* is
represented by the cycle

k—1
2 (=D, -,
r=1

THEOREM 1. (Kraines, [6]). The operation {u)* depends only on
the class {a,} € H(A).

DEFINITION 2. (Gitler, [5]). Suppose that A is an associative
DGA algebra. Suppose x € H(A) is such that +* = 0. The transpotence
P1(v) € H(B(A));m, is defined as follows: If be A represents v then
there exists M e A such that oM = —b*. @,(v) is represented by

(—l)w[bk~l I b] + [M] where w = (1)deg pk—1 +1.
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2. Main Theorem.

THEOREM 2. Let C be a co-associative DGA coalgebra over K and
let A be the dual associative DGA algebra over K. Suppose H(A; K)
and H(B(A); K) are free and of finite type over K. Let v in H(A)
and v in H(F(C); K) be such that the Kronecker index {o(v), w) is 1.
Then @,(v) is defined and is mot zero in H(B(A); K) if and only if
ud* is defined and mot zero in H(F(C); K). In this case

{Pu(v), {wp¥p = 1.

In order to prove this theorem we shall consider the Eilenberg-
Moore Spectral Sequences with

E* = Cotor?F4:® (K K)

E™— E°H(F(B(A)); K) ~ H(A; K) as algebras, and dually,

(E/)z — Tor F©rr) (K, K)

(E") = E°HB(F(C); K) ~ H(C; K) as coalgebras.

We also note that the Kronecker Index {,>: C® A — K induces
a pairing

{, » FIC)®B(4) —~ K

LEMMA 1. Let be A represent ve H(A). Suppose v* = 0. Then
dillpi(v)] = [0b]* in E* .
Proof. Let
k—1 .
V=3, P@) [[6*| b]] ([[6]])*~"" where P(i) = (—1)%¢ "+

and the outside bars refer to the Cobar Construction and the inside
bars refer to the Bar Construction.
Taking o0V gives a telescoping series and so

oV = [ob]* + (=1)*[o(b*)]. Here (—1)* = P(k — 1) .

In E', V represents the class (—1)[[6*|d]] + [[M]] = [@4(v)]-
The Lemma follows from the definition of a spectral sequence of
a bi complex.

LEMMA 2. Let ac F(C) represent w. Then, by definition,
Tilal = [a] -+« (k) -+ |a] € B(F(C)) .
If v.la] lives to E** then {u)* is defined and
di(velal) = <w)k in (E')* .
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Proof. We first make an observation: Suppose {u)' is defined.
Let (a;) be a defining system for {u)’. Let

W=3 3 la]--|a]eBEFQC).

r=2 dpFeeetip=t
Then
OW = 3, (— 1)+ [a,a, ] -

Now to prove Lemma 2, we use induction on k. Suppose the
lemma is true for &k — 1. Suppose v.[a] lives to E,_,. Since E is a
spectral sequence of DGA coalgebras, and d,_,(v.[a]) = 0, we have

k
A dk_l7k[a] = dl?—-l A 'Yk[a] = dk®_1 %7.,{@] ® 'yk_,_[a] = 0

where d® is the differential in E' Q) E’. That is, in particular when
1 =k — 1 in the above, we see

dk-—l’yk—-lla’] ® [a] =0 so dk~1 7k—1[a] =0.

Now by inductive hypothesis, (u)*~* is defined so there is a defining
system (a,, ++-, a,_,) for {u)* and a cochain @, such that
k—2
oa, = 3, (—1)* %i—ra,;_a;,_;
i=2
since {u)* ' = d,_, 7,[a] = 0.
The observation at the beginning of this lemma shows that

divilal = <w)k .

We now give the proof of Theorem 2:
Assume @, (v) is defined and nonzero. We are assuming =1 = {ov, w).
Hence

1 = {ov, upy = {odb, a) = {[ob]*, vi[a]) = LdwP:(v), Vila])
= LP(v), divilal> = {Pu(v), <ud¥>

by the duality of the two spectral sequences and Lemma 2.

It remains to be shown that if {u)* is defined and nonzero, then
so is @,(v). Consider the map

A — F(B(4)) defined by

b— [[bl] .
This map is homotopy multiplicative (in fact is a SHM map) and is
an equivalence. Hence [[b*]] differs from [¢b]* by a boundary. But
[0B]* = [0b]|++- (k) -+ | ob] is dual to v,[a] = [a|+-- (k) ---|a] in BF(C),
and so d,v;[e] = {u)* is not zero in E* (Lemma 2) and so does not
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survive to E=, i.e., represents 0 in E=. The dual element [ob]*
represents 0 in E=, i.e., [[6*]] ~ [0b]* ~ 0. Therefore b* ~ 0 and so
®,(v) is defined.

We wish to mention two applications:

Al: Let K= Z, and let X be a K(m,n) space (p an odd prime).
Let C = C*(X; Z,) and A = C.(X; Z,) be cochain and chain complexes
for X of finite type. In the notation of Cartain, A = A.(zw, n; Z,) ([2]).
Cartan proved that {@,(v), BP™(w)) = {ov, w). Now by Theorem 2, if

lov,uy =1

then {®,(v), {uy?> = 1. Hence {p,(v), BP™u + {u)*»> = 0. By Lemma
18 ([5]), <u)? = ¢BP™u. This gives an easy proof of the fact that
¢ = —1. (Compare Theorem 19 [5]).

A2: Now let # = CP**'. Then in H*(CP**; Z) = P(v);,» we
have #* = 0. Then @,(v) is defined in H*(Q CP**; Z) and by the
Theorem 2, so is <u)* in H,, (2 CP*';Z) where wue Hy)(2 CP**, Z)
and {p(v),<{u)*> =1. This gives another proof of the results of
Stasheft ([7]).
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