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The object of the present note is to indicate a derivation
of the Lδwner differential equations [1] based on the derivation
of an associated differential equation for Green's function of
the variable region relative to the defining parameter. Deci-
sive in our treatment is the use of a certain normalized
minimal positive harmonic function on the variable region.
In fact, our starting point was the feeling that the Poisson
kernel asserted its presence so strongly in the Lowner differen-
tial equations that the concomitant presence of a normalized
minimal positive harmonic function on the variable region
should appear naturally in the study of the question. We
shall see that this is the case. A technical advantage of the
present approach is that the "tip" lemmas of the classical
proof are dispensed with.

It would be of interest to see whether the indicated method,
which is available for other families of harmonic functions monotone
justifying in a parameter, has useful applications to the theory of
harmonic functions.

2* Let 7 be a Jordan arc with parametric domain [0, T] such
that 0 < |τ(ί)l < 1 for 0 ^ t < T and \y(T)\ = 1. Let At denote the
complement of the set y({t ̂  s < T}) with respect to the open unit
disk, 0 <^ t ^ T. Let gt denote Green's function for At with pole at
0. The continuous dependence of gt on the parameter t is an ele-
mentary matter (minimal property of Green's function, the Phragmen-
Lindelδf boundary maximum principle). We let a(t) denote lim^0

[gt(z) + log-1 |̂]. We note that a:t—>a(t) is an increasing continuous
function which satisfies a(T) = 0. We reparametrize 7, as in the
original Lowner argument, by composing 7 with

t > inv a[t + a(0)], 0 ^ t ^ - a(0),

so that for the new 7 we have T = — #(0) and a{t) = a(0) + t. [The
notation "inv" is used to denote the inverse of a univalent function.]

We let G be defined by

G(z, t) = gt(z), zeAt,0^t^T.
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Given a function F having as domain a subset of C x R, we denote
by D2F(a, b) the derivative of ί —> F(α, ί) at δ and by DxF{a, b) and
Dj^Fia, b) the complex differential coefficients of z —> 2̂ (2, δ) at α, the
obvious conventions holding. Our first step is to establish the ex-
istence of D2G and to obtain information about it. We remark that
the logarithmic singularity of gt at 0 is harmless. The difference
quotient

(1) CKz,t) - CKz, s) t 0 ^ s < t ^ T ί

t — s

defines a positive harmonic function on As which takes the value 1
at 0 and vanishes continuously at each point of the frontier of At.

To control the limiting behavior of (1) as (s, t) —• (σ, σ), 0 ^ σ <£
T, we make use of the boundary behavior of the Riemann mapping
function for a simply-connected Jordan region and the following
standard lemma of Harnack type.

LEMMA. Let m(z) = (1 - \z\) (1 + |z |)- 3 and M(z) = (1 + \z\)
x (1 — I z |)~3. Let a and b be points of the semi-circular disk {Im z >

0, \z\ < 1}. Let u be nonnegative and harmonic on this set and vanish
continuously on the diameter. Then

[A proof of this lemma is readily given with the aid of Schwarzian
reflexion and the Poisson integral for a circular disk.]

Suppose that (sΛ, tn) —• (σ, σ), where 0 <£ sn < tn ^ 1. Then some
subsequence of the sequence of difference quotients (1), given by
s = sn and t = tn, converges, uniformly on compact subsets of Aσ, to
a positive harmonic function on Aσ which takes the value 1 at 0.
Using the boundary behavior of the Riemann mapping function when
a Jordan boundary lies at hand and the stated lemma, we see that
the limit function in question vanishes continuously at each point of
the frontier of Aσ, the "tip" j(σ) excepted.

We introduce the normalized Riemann mapping function ftf

mapping the open unit disk onto At and satisfying ft(0) = 0, /J(0) >
0. From the continuity of t —* gt, we infer the continuity of t —* invft

and thence the continuity of t-+ft. Of course, the term "con-
tinuity" is to be construed in the sense of uniform limits on compact
subsets. We let tc(t) denote the unique preimage of y(t) with respect
to the continuous extension of ft to the closed unit disk. If A is a
positive harmonic function on At taking the value 1 at 0 and vanish-
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ing continuously at each point of the frontier of At, the "tip" τ(t)
excepted, then

(2)

It follows that there is at most one h having the stated property.
Using (2) as a defining condition for h, we see that such h exist.
We denote the unique h in question (which is a normalized minimal
positive harmonic function on At) by ht.

Combining the results of the preceding two paragraphs we
conclude that the difference quotient (1) tends to hσ as (s, t) —> (σ, σ)
and that, in fact, the uniformity of the limit process holds on compact
subsets of Ao. We let H be defined by

H(z,t) = ht(z), zeAt, O^t^T.

We see that the following differential equation, which will serve as
a basis for the derivation of the Lδwner differential equations, holds:

(3) D2G = H.

Continuity of t~+ht and /c:t-+fc(t). A second application of the
boundary behavior of the Riemann mapping function for Jordan
regions and the lemma yields the continuity of t —+ht, 0 ^ t ^ T. It
suffices to establish the fact that if tn --> σ, then some subsequence
of (htn) tends to hσ. Using the continuity of t-+ht, the continuity of
ί —>/«, and (2) we shall now conclude the continuity of K. Indeed,
if tn-^σ and κ(tn)—+a, we obtain, using (2), the equality

and hence a — κ(σ). The continuity of fc follows.

3* The Lδwner differential equations* The equations bear on
the functions F, Ψ, and Θ, which will now be introduced.

F. We define F by F(z, t) = ft(z), \z\ < 1, 0 ^ t g T. I t is
convenient to have available Φ defined by Φ(z, t) = inv ft(z), zeAt,
0 ^ t ^ T. Its role is auxiliary. The function Φ is useful as a link
between F and G = - log \Φ\.

Ψ. The function Ψ is defined by Ψ(z, t) =

inv ft[fo(z)], \z\ < 1, 0 ^ t ^ T. This is the first function studied by
Lowner in his classical paper. There is an identity involving Φ and Ψ:

(4) Ψ(z, t) = Φ[fo(z), t].
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Θ. The function Θ is specified by the requirement that, z—>
θ(z, t) is the inverse of z-+Ψ(z, t), \z\ < 1, 0 ^ t ^ T. From

z = Ψ[θ(z, ί), ί] - inv / t {fo[θ(z, *)]}

for (2, ί) in the domain of 0, we obtain for such (z, t) the identity

(5) F(z, t) = ft(z) = fo[θ(z, «)].

The equation (3) yields a corresponding equation for Φ. Indeed,
let ht denote the analytic function with domain At satisfying ht(0) =
1, Re ht = hu and let H be defined by H(z, t) = ht(z), zeAt, 0 <£ t ^
T. Clearly, the function H is continuous on its domain. To derive
an equation bearing on Φ, we introduce G1 having the same domain
as G which satisfies Gx{z, t) = G(z, t) + log \z\, z Φ 0, d(0, ί) = a(0) +
t, and thereupon Gj. with the same domain and satisfying the condi-
tion that z —> Gi(2, ί) is the analytic function with real part z -+ G^z,
t) satisfying G^O, t) = G^O, ί) It is readily verified that

the limit process being uniform in the sense indicated above. It
follows, in view of the normalization made on G19 that

DA = H.

Using the relation

Φ(z,t) = z exp [ - G ^ ί ) ] ,

we are led to the equation

(6) D2Φ = - HΦ.

From (4) and (6) we obtain

DtΨ(z,t)= -H[fo(z),t]Ψ(z,t)
= ~ ht[f0(z)]W(z, t)
= - [(htoft)o{mv ftof0)(z)]Ψ(z, t),

and, consequently, the Lowner equation

DJΓ{Z' t ) =

 K(t) - Ψ(z, t)

(z, t) in the domain of Ψ.
The equation for F. From (6) and the continuity of H, Φ, ΌXΦ,

Dφ (trivially, since it vanishes), we conclude that Φ has the C
property and so is differentiate. Since F is continuous on its domain,
ΌXΦ is nowhere zero, and the identity,
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Φ[F(z, ί), ί] = z,

\z\ <l,0 <^ t ^ T, prevails, it is a standard matter of the differential
calculus to conclude the existence of ΏJF and the identity,

DxΦ[F(z, ί), t]D2F(z, t) + D2Φ[F(z, t), t] = 0,
w \z\ < 1,0 ^t^T.

It is elementary that

(9) DxΦ[F(z, ί), t]DtF(z, t) = 1,

for the same (z, t). From (8) and (6) we obtain

, t), P Λ ί) -

and thereupon using (9) the equation

D2F(z, t) = DxF(z, t)z
κ(t) - z '

That Θ satisfies the equation (10), θ replacing F, on its domain,
is immediate from (10), and the identities obtained from (5) by differen-
tiation. The G property of F follows from the continuity of Dφ,
D2Φ and F on their respective domains and the identities (8) and (9)
as well as the non-vanishing of DXΦ. The G property θ is now
concluded with the aid of (5).
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