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ON THE SOLUTION OF LINEAR G.C.D. EQUATIONS

DaviD JACOBSON AND KENNETH S. WILLIAMS

Let Z denote the domain of ordinary integers and Iet
m<g ]-)y n(g 1)7 lt(i = 1; Tty m)y l”(’l;:]., e, My j:17 Tty ’l’L) €Z.
We consider the solutions x€ Z" of

(1) G.C.D. (luxl R llnwn -+ l], tee, lm1x1+ e
+ lnan + Uy C) =d ’

where ¢(+ 0), d(=1)e Z and G.C.D. denotes ‘““greatest common
divisor”’. Necessary and sufficient conditions for solvability
are proved. An integer ¢ is called a solution modulus if
whenever x is a solution of (1), x + fy is also a solution of
(1) for all ye Z». The positive generator of the ideal in Z
of all such solution moduli is called the minimum modulus of
(1). This minimum modulus is calculated and the number of
solutions modulo it is derived.

1. Introduction. Let Z denote the domain of ordinary integers
and let m(Z 1, n(=1),L(i=1,+--,m), ;=1 ¢cc,m;g=1,+--,
nyeZ. We write Il =(l, +-+,1,) and for each 1 =1, -+, m we write
L=y, »--, Lyand li=(;, «++, L, [;) sothat L ¢ Z™, each l; € Z*, and each
liezrt, Ifx = (x, -+, x,) € Z" we write in the usual way [;-x for the
linear expression Il;x, + <+ + l,x,. We let L denote the m x n
matrix whose 4th row is I; and L’ denote the m X (n + 1) matrix
whose ith row is Ii.

Henceforth in this paper we will write the abbreviation G.C.D.
for ¢ greatest common divisor’’ of a finite sequence of integers, not
all zero, and consider the solutions x e Z” of

(1.1) G.OD. (Lox + Ly voey e+ Ly o) =d,

where e(s 0), d(= 1) e Z. A number of authors have either used or
proved results concerning special cases of this equation (see for
example [1], [5]) so that it is of interest to give a general treatment.
This equation is clearly connected with the system

(1.2) l,"x’*"l.bEO (l’l’lOd d) (7::1, "',m).

If we denote the number of incongruent solutions modulo d of (1.2)
by N(d, L), then N(d, L’) > 0 is a necessary condition for the solva-
bility of (1.1). A complete treatment of the system (1.2) has been
given by Smith [4]. Let D, = greatest common divisor of the deter-
minants of all the 4 x ¢ submatricesin L (z = 1, -+ -, min(m, n)), D; =
greatest common divisor of the determinants of all the 7 x 7 sub-
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matrices in L’ (¢ = 1, «-+, min(m, n + 1)), v; = greatest common divisor

of d and ll))’ ,©=1, «++, min(m, n), where D, =1, and 7, = greatest
4—1

’

common divisor of d and D%, i =1, +++, min(m, n), where D} = 1.
i—1
Smith has shown that (1.2) is solvable if and only if
min(m, n) min(m, »n)
Yi= I 7

i=1 i=1

and

bt _ .
DI = 0 (mod d),if m>n.

When solvable he shows that
N(d’ LI) — ,Ydmax('n,—m,o) ,

where

We show in Theorem 1 that the conditions
@.3) dje, Nd, L) >0,GCD. {,---,1,d =G.C.D. (I, -+, 1, ¢)

are both necessary and sufficient for solvability of (1.1). When (1.1) is
solvable, (1.3) shows that the quantity ¢ = G.C.D. (, ++-,1,,d) is a
factorof 1,, I, (: =1, .-+, m), ¢c and d. Cancelling this factor throughout
we obtain the equation

G.C.D. (lJg-x + L/g, +++, LuJg-x + l./g, c/g) = d/g .

This equation is equivalent to (1.1) in the sense that every solution of
this equation is a solution of (1.1) and vice-versa. Thus we can
suppose without loss of generality that

G.CD. ({, -+, 1, d)=1.
The solution set of (1.1) is denoted by .&45° = &45°(L/) that is,
(1.4 A =9L)={xecZ"|GCD.(lx+1, -+, 1l,-x+1,¢ =d}.
Moreover when .&4° = ¢, we have
dle, Nd, L") > 0,G.C.D. (I}, -+, l5,,¢0) =1,

and we write e for the integer c¢/d.
IfteZ,a=(a,+++,a,)ecZ" and b= (b, -+, b,) € Z", we say that
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a and b are congruent modulo ¢ (writing a=b (mod ¢)) if and only
if @; = b; (mod t) for each ¢ =1, .-+, n. This congruence=is an equi-
valence relationship on Z*. If .$4° =~ @, any integer ¢ for which this
equivalence relationship is preserved on &5°(< Z") is called a solution
modulus of (1.1). Thus a solution modulus ¢ has the property that
if x € &4° then x 4ty € &4 for all y ¢ Z*. Clearly 0 and =~ ¢ are solution
moduli. In Theorem 2 it is shown that the set of all solution moduli
with respect to &5° viz.,

c=MYL) ={teZ| x +tye . forall xe ¥ and all ye 27},

is a principal ideal of Z. The positive generator of this ideal is
denoted by M4(L') and called the minitmum modulus of the equation
(1.1). We show

(1.5) M;=M(L)=d

»le;N(pd,L'}>0
(Here and throughout this paper the empty product is to be taken
as 1). The product in (1.5) is taken over precisely those primes p|e
for which the system of congruences l;+x + 1, =0 (mod pd) (i =1,
.+, m) is solvable.

In §5 we consider the problem of evaluating ; = N (L'), the
number of incongruent solutions x of (1.1) modulo the minimum
modulus M4, from which the number of solutions modulo a given
modulus can be determined. In Theorem 4 we derive a technical
formula which allows the evaluation of 9t in some important cases
(see §6). In particular we prove that if G.C.D. (d,¢) = 1 then

. : a 1
(1.6) N = N, L) PIe,N(rHi,L’)>Op <1 B p””’“) ’

where 7(p, L) is the rank of the matrix L obtained from L by re-
placing each entry [;; by its residue class modulo p in the finite field Z,.

Finally in § 7 an alternative approach is given which enables us
to generalize a recent result of Stevens [6].

2. A necessary and sufficient condition for &4° # . We begin
by dealing with the case d = 1. We prove

LEMMA 1. &%° == @ if and only if
2.1) G.C.D. (], ++-,1,,,c) =1.
Proof. The necessity of (2.1) is obvious. Thus to complete the

proof it suffices to show that if (2.1) holds then ${°# @. In view
of (2.1) for each prime p|c there must be some I; or ;=0 (mod p).
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If some I; 0 (mod p) we let x'(p) = 0, otherwise we have some [;; =
0 (mod p) and we let x'(p) = (0, +--, 0, x;, 0, -+, 0), where the j* entry
2; is any solution of [;x; = 1 (mod p), so that in both cases we have

G.C.D. (ll'xT(p) + ll! °ty lm'xT(p) + lmi p) =1.

We now determine x by the Chinese remainder theorem so that x =
x'(p) (mod p), for all p|ec. Hence we have

G.OD. (ox + 1, o+, Lyox + L, TI D)
pleo
= H G.C.D. (ll'x + ll, ttty lm'x + lms p)
»le
= [I G.C.D. (l;-x"(p) + &, ++ =, Ln+X"(D) + ln, D)

ple

=1,
proving that x e .&7°.
Now we use Lemma 1 to handle the general case d = 1. We prove
THEOREM 1. .&45° = @ if and only if
2.2) dle, Nd, L") > 0,G.C.D. ({, +++,1,, d) = G.CD. {, -+, 1, ¢).
Proof. The necessity is obvious. Thus to complete the proof we

must show that if (2.2) holds then &5° = @. As N(d, L’) > 0 there
exists ke Z" and h = (h, +--, h,) € Z™ such that

(2-3) li'k+li:dh5,i:1,"‘,m.

We write d, = d/g, 9. = LiJoe 24", g;: = Lijge Z", 9, = l;/Jge Z(t =1, -,
m) where g = G.C.D. (I, ---,1,, d) and suppose that

(2.4) G.C.D. (g, *+*, gmy h,0) > 1,
where ¢ = ¢/d. Then there exists a prime p such that
(2.5) g:=0(@¢=1,---,m), h=0,e=0 (mod p) .
Now from (2.3) we have
gick+9,=dh,i=1,-,m,

and so appealing to (2.5) we deduce g; =0 (mod p) 2 =1, .-, m),
giving g; =0 (mod p) (¢t =1, +++, m). Thus we have G.C.D. (g}, «--,
gn, die) =0 (mod p), which contradicts G.C.D. (g!, -+, g, de) = 1.
Hence our assumption (2.4) is incorrect and we have G.C.D. (g, ---,
Gm, 1, ¢) = 1. Thus by Lemma 1 there exists v e Z, such that

G.C.D. (g,'A + hyy ++*, gu'N + by, e) = 1

and so x = dx + ke &
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3. Throughout the rest of this paper we suppose that .&5° = &
and G.C.D. ({, +-+,1,, d) = 1. Thus by Theorem 1 we have d|¢, N(d,
L) >0 and G.C.D. (I, -+, 1,,,¢) = 1. Also throughout this paper
corresponding to any xe.&4° we define ueZ™ by u= (u, *--, %),
where l;»x + 1, = du;(¢ =1, -+, m), so that G.C.D. (u,e) =1. The
following lemmas will be needed later.

LEMMA 2. () If xe.95° and p is a prime dividing e for which
the system of simultaneous congruences
3.1) Liez+u;=0 (mod p),t =1, «o¢, m,

is solvable then N(pd, L’) > 0.
(ii) Conversely if p is a prime dividing e for which N(pd, L'y > 0
then there exists x € .%5° such that (3.1) is solvable.

Proof. (i) For xe.%%° and z a solution of (8.1) we let w = x + dz.
Then for 2 =1, ---, m we have

l.,;'w + l’z. —- (li'x + l,,/) + dli'z
= d(ul + li’Z)
= O(mod pd) ,

showing that N(pd, L’) > 0.
(i) We define v; by L;-w + I, = pdv; (i = 1, ---, m) and claim that

(8.2 G.C.D. (I, ++<, 1, pv;, <o+, DV, @) = 1.
For if not there is a prime p'|e such that
li Eoypvi =0 (mOd p’) (?: = 1: .“)m) .

Thus from l;-w + I, = d pv; we have [, =0 (mod p’) ¢ =1, «++, m),
giving I} = 0 (mod p') (¢ =1, ---, m), which contradicts G.C.D. (I}, «--,
l,,,de) = 1. Hence (38.2) is valid and so by Lemma 1 we can find t e Z"
such that

G.C.D. (It + pv,, ++«, L, t + pv,,0) = 1.
We set x = w + d t so that for 1 =1, ---, m we have
lLiex + 1, =dl;-t + pv),
giving
GCD. (lyox+ 1, e, lpx + 1,0

= d G-C.D. (ll.t "l‘ p’vl, "'ylm't + pvmv e)
=d,
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so that xe .$4°. Finally taking z = — # we see that the system
Liez+u;,=0 (mod p) (=1, «++, m)

is solvable, as u; = L;-t + pv,.

LEMMA 3. Let t be a positive integer, A a subset of Z™ which
consists of A(t) distinct congruence classes modulo t. Now if t is a
positive integer such that t|t' them A comsists of (t'[t)"A(t) congruence
classes modulo ¢'.

Proof. It suffices to prove that a congruence class C modulo ¢ of
A consists of (¢'/t)* classes modulo ¢'. This is clear for if x e C then
so does x + ty;, (¢ =1, ---,('/t)"), where the y; are incongruent
modulo ¢'/¢, moreover the x + ty; are incongruent modulo ¢’ and every
member of C is congruent modulo # to one of them.

4, The minumum modulus. In this section we determine the
minimum modulus M. We prove

THEOREM 2. If <5°+ @ and G.C.D. (I, +++, 1., d) =1 the min-
wmum modulus MG with respect to S4° is given by
4.1) M, =d
»le,N(pd,L’)>0
Proof. As 5°# @, M—the set of all solution moduli with
respect to .&45°—is well-defined and moreover I¢ is non-empty as 0

and & ¢ belong to M3. The proof will be accomplished by showing
that %7 is a principal ideal of Z generated by d 11

ple,N(pd,L’)>0

(i) We begin by showing that I: is an ideal of Z. It suffices
to prove that if ¢, € IMs and ¢,e IN; then ¢, — ¢, € M3, For any x € .545°
and any yc€ Z"* we have x + {ye.5%° as t, € M. Hence as t,c g
we have

(x + ty) + t(— y) e S4°,
that is
x4+ (t —t)ye &5,
so that
t, — t, e My .

(ii) Next we show that k= d TI peMs.

ple,N(pd,L’')>0
For x ¢ .94° and any ye Z" we have
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GC.D. (,-(x +ky) + 1y eoeyly(x + ky) + Ly 0
= G-C-D. (ll'x -+ ll -+ k(ll'y)y *t %y lm'x + lm + k(l‘m.y)’ d@)
= d G.C.D. (71/1 + kl (ll'y)y cesy Uy + kl (lm'y)! 6) ’

where k&, = k/d. To complete the proof we must show that for all
y<cZ" we have

G.C.D. (u, + k. (Loy)y v oy thy + K, (L,,-y)se) = 1.

Suppose that this is not the case. Then there exists y,€Z" and a
prime pl|e such that «; + &, (I;+y,) = 0 (mod p) fore =1, «--, m. Let
z = x + ky, so that for ¢ =1, ---, m we have

Lez+lL=lLx+1;+k{;-y)
=d (ui + kl (li'yo)) ’
that is,

so that N(pd, L’) > 0. Hence as ple we have p|k, and so p|u; for
=1, ++-,m. This is the required contradiction as G.C.D. (u,, +--,
U, e) = 1, since x e .95°.

(iii) In (i) we showed that Mg is an ideal of Z and since Z is a
principal ideal domain, M is principal. Thus by the definition of the
minimum modulus M{ we have I3 = (M¢). In (ii) we showed that
ke M so that M¢|k. Hence to show that M5 = k we have only to
show that k| Ms.

Now for all xe.9%° and all yec Z* we have

GCD.(l,-(x+Msy) + 1, -+, L-(x+ Msy) + Loy =d.

Hence
G.C.D. (du, + M3l -y, «++,du,, + M3l,,-y,de)=d,
and so we must have
Mil,-y =0 (mod d) ,

for all ye Z” and all 7+ (1 < 7 <m). Taking in particular y = (0, ---,
0,1,0, ---,0), where the 1 appears in the j** place we must have for
t1=1,---,mand =1, -, 0

Msl; =0 (mod d) ,
that is
G.C.D. Ml -+, M51,,) =0 (mod d)

or
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M; G.C.D. (I, ---,1,) = 0 (mod d) .

But G.C.D. ({, ---,1,,d) =1 so we must have M5 =0 (mod d). Thus
it suffices to prove that

k|5, where k, = k/d = 11 p and w5 = Ms/d .

pie,N(pd,L’') >0

We suppose that k, } 75 so that there exists a prime ple for which
the system l;-w + 1, =0 (mod pd) (¢ =1, ---,m) is solvable yet »ft
w5 By Lemma 2 (ii) there exists z< Z" such that for some xe &4°
we have

li'z—l—%iEO (modp), 7::1, --c’m.

As p/t w5 we can define N by 75 A =1 (mod p) and let y = Az so that
for i =1, «--, m we have

4.2) u; + 75 loy =0 (mod p) .
But as M¢ is the minimum modulus and x ¢ .%5° we must have
GCD. (s (x+Miy) + 1y +ooylp(x+ Myy) + 1l,,0)=4d,
that is
G.C.D. (w, + w5 Loy, ooeythy, + 75 Loy, e) =1,

which is contradicted by (4.2). Hence 75 = 11 p and this com-
ple,N(pd,L")>0

pletes the proof.

We note the following important corollary of Theorem 2.

COROLLARY 1. x€Z" is a solution of
(4.3) G.CD. (l;x + 1y sy lpx +1,0)=4d
if and only if

(4.4) GCD. (l,-x+ 1, ooy lpyx + 1, M) =d.

Proof. (i) Suppose x is a solution of (4.3). Then we can define
u; (0 =1, +-+,m) by l;-x + I, = du, and we have
G.C.D. (s =+, Up,€) = 1.

Hence we deduce

G.C.D. (%1, ety Umy H p) =1

ple;N(pd,L’) >0
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and so

GCD. (L x+ 1, -, lpox+1,d T p)=4d,

ple, N (pd,L’)>0
which by Theorem 2 is
GCD. (lyox + 1, vy lyx+ 1, M))=4d.

(ii) Conversely suppose x is a solution of (4.4). Then there exist
u; (¢ =1, +++,m) such that [;-z + I, = du; and

G.C.D. (tyy »++, Up, 11 p=1.

ple N (pd,L7)>0
Suppose however that
G.C.D. (tyy »o*y Uy, €) = 1.
Then there exists a prime p such that
u; =0 (=1,--,m),e=0 (mod p), N(pd, L') = 0.
But for ¢ =1, -+, m we have
lLiox +1l; = du; =0 (mod pd) ,

that is N(pd, L’) > 0, which is the required contradiction. Hence we
have

G.C.D. (thy, +++y Uy, e) =1
and so
GCD. (lysx+ 1, oyl x+1l,0)=4d.
5. Number of solutions with respect to the minimum mod-

ulus. We begin by evaluating 3¢, that is, the number of solutions of
(1.1), when d = 1, which are incongruent modulo M. We prove

THEOREM 3. T = [ p“(l — %) where ¥(p, L) is the
ple, N(p,L")>0 P
rank of the matrie L™ obtained from L by replacing each entry 1l
by its residue class modulo p in the finite field Z,.

Proof. By Corollary 1 the required number of solutions 3¢ is just
the number of solutions taken modulo M of

G.C.D. (lox + 1,0, x+ 1, M)=1.

Thus as M¢ = I p is a product of distinet primes, a standard
Ple,N(p,L')>0
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argument involving use of the Chinese remainder theorem shows that
this number ¢ is just [ 9(p), where (p) is the number of solutions

,C
pl]l[1

x taken modulo p of
(5.1) G.C.D. (lyx + 1, ooy lyx + lyp) =1.

Now x is a solution of (5.1) if and only if x® is not a solution of the
system (T denotes transpose)

L®x®T 4 @7 — T,

Since N(p, L') >0, this system is consistent over the field Z, and has
p* " ) solutions. Thus the number of solutions (modulo p) of (5.1)

. 1 .
is p" — prrE = p (1 - —*—pm,L>>, giving

. 1
%Lc = H P <1 - pr(p,L)>

ple,N(p,L")>0

as required.

In the proof of Theorem 2 we have seen that any solution
modulus M of (1.1) is a multiple of M;. As .&4° consists of N con-
gruence classes modulo M3, Lemma 3 shows that .&4° consists of
(M |M:3)"R; congruence classes modulo M. Hence by Theorem 3 we have

COROLLARY 2. The number of solutions x of (1.1), with d =1,
determined modulo M—a multiple of Mi—is

1
Mm (1 . __) )
p;c,N(Iz;,[L'»o pT(P,L)

As a consequence of Corollary 2 we have the linear case of a
result recently established by Stevens [6]. A generalization of this
result is proved in § 7.

COROLLARY 3. (Stevens) The number of solutions of

G.C.D. (a2, + b, -+, a2, + b,y¢) =1,

taken modulo ¢, is

cng<1_£4&%&>,

where v;(p)(t = 1, -+, n) is the number of incongruent solutions modulo
» of a;x; + b; = 0 (mod p).

Proof. The system
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ax; +b; =90 (mod p) (¢=1, -+-,m),
is solvable if and only if
G.C.D. (a;, p)|b; 2 =1,---,m),
that is, if and only if
pta;or p|G.C.D. (a;, ) (¢ =1, --+,m) .

Hence by Corollary 2 the required number of solutions is

wyrr (1 L
(5.2) e 11 (1 prm),
where the dash (') denotes that the product is taken over all p such
that »fa; or »|G.C.D. (a;, b;) 1 = ¢ < n) and r(p) is the number of
a; (1t =1, ---, ) not divisible by ». As

lip*aiy
vi(p) =40,p|a;,Dtb,
p,ypla,pl b,

for ¢ =1, ---,m, (5.2) is just

e 11 <1 _ 20 pn vn(p)> ’

which is the required result.

We now turn to the general case d = 1. Let p be a prime and
let E denote an equivalence class of .&4° consisting of elements of &7
which are congruent modulo d. We assert that if x®, x® ¢ E then
the system 7;-z" +u{’ =0 (mod p) (¢ = 1, ---, m) is solvable if and only
if the system [;-z® + w4, =0 (mod p) (¢t =1, --+, m) is solvable. As
x® = x® (mod p) there exists e Z* such that x* = x" 4 df. Hence
for =1, ..., n we have

duf® = 1,-x?% + 1,
= li’x(l) + lz + dl,b't
= du{’ + dl;-t
giving
wd = u® + Lt.
If there exists z%eZ" such that [,+z" 4+« =0 (mod p) (¢ =1,

-+, n) letting z®¥ = z% — ¢ we have ;-2 + u{® = [;.2" — I,-t + u{ +
l;-t = 0 (mod p), which completes the proof of the assertion. Hence
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the solvability of the system
li:z+u; =0 (mod p) (¢ =1,+-+,m)

depends only on the equivalence class E to which x (recall ;-x + [; =
du;) belongs. Thus we can define a symbol §,(E) as follows:

liez+u;, =0 (mod p) (¢ =1, -+, m) is solvable,

1, if for some x € E (and thus for all x € E) the system
0,(E) = {

0, otherwise.

We now prove the following result.

N(d,L’)

1 sp(E()
THEOREM 4. N = > {MN(ELI)>O " <1 - 20’_“’7)> }, where

J=1

the EY9 denote the N(d, L') congruence classes modulo d in &5°.

Proof. We let
& ={xeZ'|l;x+1;,=0 (mod d),t =1, -+, m}

so that we have $5° < .&”. Now .&” consists of N(d, L’) congruence
classes modulo d and if we restrict this equivalence relation modulo
d to &4°, we show that .4° also contains the same number of classes.
We write E(x) (resp. E'(x)) for the equivalence class to which x e .%5°
(resp. x €.9”) belongs. From the proof of Theorem 1 we see that for
each x e.9” there exists A e Z" such that x + dre.&%°. We define a
mapping f from the set of equivalence classes of .&” into the set of
equivalence classes of .&4° as follows: For xe.&”

f(E(x) = E (x + d\) .

This mapping is well-defined for if x’e .5 is such that E'(x’) = E'(x)
then E(x' + d\) = E(x + d\). f is onto for if x e &4° then f (F'(x)) =
E(x) and is also one-to-one, for if f(E'(x)) = f (E'(y)), then E(x + d\) =
E(y + d\), that is x = y (mod d), giving E'(x) = E'(y). Thus the
number of equivalence classes of .&5° is the same as the number of
equivalence classes of &7, that is N(d, L’).

Since d|M:, each equivalence class E of .&5°, consists of a certain
number of distinct classes in .&4° modulo Mj. We now determine this
number. If xe E, x + dt also belongs in E if and only if it belongs
in &7, that is, if and only if,

G.CD. (L-(x + dt) + 1, ++v, Lye(oc + db) + Lpy0) = d,

that is, if and only if,
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(5.3) G.C.D. (y + Liot, voeythy + Lyt 6) = 1.

Thus the number of distinet classes modulo M§ contained in E is
just the number of distinct classes modulo 75 = M:/d which satisfy
(5.3). But the minimum modulus of (5.3) is [I,.»’**. By lemma
23 0,(E)=1 implies N(pd, L') >0, so that TII,.p*»"® divides
Moievwarnse »=me Writing [I5. for Il,e.wwperrso and JI5. for
Ioe.vpa,2=0r the required number of classes is by Corollary 2

Gp(E)

= IIt p". H<1——E%,—L>>

ple ple

N 1 3p(E) / 1 5p(E)

ple ple

el L\
- H; p \1 pw,L)) ’
as N(pd, L) = 0 implies 4,(%) = 0.

Finally letting E%, ..., E*® denote the h = N(d, L') distinct equi-
valence classes in .&4° we deduce that the total number of incongruent
solutions modulo M of (1.1) is

Tom o oe( Lyt
D —_— .
=1 ple,N{pd,L')>0 p*“"“

We remark that »(p, L) = 0, for ple and §,(F) = 1. Otherwise,
if »(p, L)=0, ;=0 (mod p) (¢ =1, +--, m). But as §,(&) =1 then for
x € F the system [l;+z + %, = 0 (mod p) (¢t =1, ---, m) is solvable con-
tradicting G.C.D. (uy, »=+, U, ¢) = 1.

6. Some special cases. We note a number of interesting cases
of our results.

COrROLLARY 4. If G.C.D. (d,e) = 1 then the number N of solu-
tions of (1.1) modulo M is

. ' . 1

Y = N, L) me,zv(]zg,y»op (1 N p”p’“) ’

Proof. By Theorem 4 it suffices to show that if G.C.D. (d,e¢) =

1, ple, N(pd, L') > 0 then for all x € .57 we have §,(E) = 1, that is the

system l;+z + u; =0 (mod p) is solvable. Let w be a solution of

lisw+1; =0 (mod pd), say l;»w + I, = pdv; (i =1, -+, m). As p/tdwe

can define z = d'(w — x), where dd™* =1 (mod p) so that for 7 =
1, .-+, m we have
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Licz+w,=d'w— 1;-x) + u,
= d Y (pdv; — I; — du; + ;) + u;
= dd™'(pv; — u;) + U;
=0 (mod p),

as required.

COROLLARY 5. If N(d, L) =1 then the number N of solutions
of (1.1) modulo M5 is

6.1) Y= I (1 _ —1—> :

ple,N(pd, L) >0 pre. L)

In particular N(d, L') = 1 when L is invertible (mod d), and so
NG is given by (6.1). Moreover if L is invertible modulo d I, » or
¢, then (1.1) is solvable and % = [, .(p" — 1).

Proof. This is immediate from Theorem 4 since by Lemma 2(ii),
0,(E) =1 for all ple, N(pd, L') > 0. Also (1.1) is solvable when L is
invertible modulo d [],. » as

G.C.D. (¢, -+, 1,,d) =G.C.D. (I, ---,1l,,c)=1.

COROLLARY 6. If L s wnvertible modulo 11 » then the
ple,N(pd,L’)>0

number of solutious of (1.1) modulo M; s

Ne= N, L) T (p"—=1).

ple,N(pd,L") >0

Proof. Let p be any prime such that p|le and N(pd, L’) > 0.
Then L is invertible modulo p and so for any x e .$4° the system

liez4+u;=0 (modp) 1 =1, --+, m)

is solvable and so 6,(E?) =1, j=1, ---, N(d, L'). Moreover as L is
invertible modulo » we have r(p, L) = » and the result follows from
Theorem 4.

COROLLARY 7. If
(6.2) G.C.D. (a,, *++,a,,d) =1
the equation
(6.3) G.C.D. (2, + -+ + a,x, + b,c) =d
1s solvable if and only if

(6.4) d|e¢ G.CD. (a,+++,0,b,¢c)=1.
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The mintmum modulus of (6.3) is

dll’»

ple/d

and the number of solutions x modulo this minimum modulus is

e (0" — )

ple/d
where the dash (') means that the product is taken over those primes
ple/d such that G.C.D. (a,, ++-, a,, p) = 1.
Proof. According to Smith [4] or Lehmer [3] the number of
solutions x taken modulo d of
ax, + -+« + a2, + b= 0 (mod d)

is d** G.C.D. (a,, -+, a,, d) if G.C.D. (a, +++,a,,d) divides b and 0
otherwise. Thus as G.C.D. (a,, +-*, a,, d) = 1, we have N(d, L) = d*+
and so by Theorem 1 (6.3) is solvable if and only if

d|e, G.C.D. (a;, ++,a,, b,¢c) = 1.
Now if (6.3) is solvable and p|c¢/d then
G.C.D. (a,, *++,a,, pd)|b
if and only if
G.C.D. (a,, ***, @, p) =1,
in view of (6.2) and (6.4). Thus by Theorem 2 the minimum modulus is

a1l ».
ple/d
Finally for p|¢/d, G.C.D. (a,, +++, @, ») =1 we have #(p, L) =1 and
moreover the congruence ax, + <+« + a2, + u = 0 (mod p) is always
solvable so that 6 ,(E“) =1,7=1,--,d*'. Hence by Theorem 4 the
number of solutions is

1
dr—! ror (1 — =),
pgd b ( p)
We remark that in particular ([5])
G.C.D. (ax + b,¢) =1

is solvable if and only if G.C.D. (a, b,¢) = 1, has minimum modulus
oiepte » and has [I,... (® — 1) solutions # modulo the minimum
modulus.
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COROLLARY 8. There is a unique solution of (1.1) modulo M; if and

only if
(i) N, L) =1 and there is mo prime p such that

ple, N(pd, L') > 0,
or

(ir) N(d, L) =1 and the only prime p such that ple, N(pd, L’) >
0, is p=2, and r(2, L) =1, n = 1.

Proof. If (1.1) possesses a unique solution modulo M4, Theorem
4 shows that S can consist only of a single congruence class modulo
d. Hence N(d, L’) = 1. Also by Theorem 4 if there is no prime »
such that ple and N(pd, L') > 0 then M = 1. Suppose however that
there is such a prime p. Then by Corollary 5 we have
1= I _(p"—p®").

ple,N(pd,L’)>0

This occurs if and only if
(6.5) pn . pn—r(p,L) — 1 ,

for all ple with N(pd, L') > 0. But the left-hand side of (6.5) is
divisible by p unless »(p, L) = n. Then p = 2 and we have p = 2,
n = 1,r(p, L) = (2, L) = 1, which proves the theorem.

7. Another method. Although the formula of Theorem 4
applies to some important cases in § 6, this formula seems difficult to
evaluate even for example in the diagonal case

G.CoD- (alxl + bly *ty a/nxn + b?’t’ C) = d °

The inherent difficulty is in determining for a given prime p which
solutions of this equation have the property that the system a;z; +
u; =0 (mod p) (¢* =1,---,7n) is solvable. We now present another
method which in conjunction with previous results yields the diagonal
case.

We consider the set 1 of ue Z™ with G.C.D. (u, e) = 1 for which
the system

(7.1) liox 4+ 1, =du; (modc) (® =1, ---,m) is solvable .

It is clear that if ucl and u = u’ (mod ¢) then u’'cll. We denote
by K% the number of distinct classes modulo e contained in 1. Let
9N denote the number of solutions x of (1.1) modulo ¢. We prove

THEOREM 5. N = K;N/(L*) where L* is the m X (n + 1) matrix
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[L:0].

Proof. If xe.54° then there exists ue Z" such that l;-x + [, =
du; (1 =1, -++, m) and G.C.D. (u,e) =1. If x,x'e.55° are such that
x = x’ (mod e) then du; = du; (mod c), that is u;=u} (mod e).

Conversely if G.C.D. (u,e) =1 and x satisfies /;-x + I; = du,; (mod
¢)(i=1,+++,m) then l;-x + I, = d(u; + N\e) and x e .95° as G.C.D. (u+
Ae, e) = G.C.D. (u,¢) = 1.

Thus xe .95 if and only if x is a solution of I;-x + I; = du; (mod
¢), where G.C.D. (u,¢) = 1. Now there are K; incongruent classes of
u modulo e, with G.C.D. (u,e) = 1, for which (7.1) is solvable. For
each one of these, (7.1) has N,(L:0) incongruent solutions modulo e.
Hence we have

N = KiN.(L¥)

as required.
We now obtain the following interesting result.

COROLLARY 9. If he Z"ande,---,e, are divisors of e then the system
(7.2) u; = h; (mod e;) (1 =1, -+, m)

has a solution u = (u,, *++, u,) such that G.C.D. (u, ¢) = 1 if and only
if G.C.D. (e, ++y€u by +++yhy,ye) =1. When this holds (7.2) has

1

11 Gefed T (1~ )

distinct solutions u modulo e, for which G.C.D. (u, e) = 1, where r(p) =
number of e; (1 =1, «--,n) not divisible by p, and the dash (') means
that the product 1is taken over those primes ple such that pke; or
p|G.C.D. (e;, b)) (£ =1, «++, m).

Proof. The system (7.2) has a solution u such that G.C.D.
(w, ¢) = 1 if and only if

(7.3) G.C.D. (ex, + Ay o+ye,2, + h,e) =1

is solvable, which by Lemma 1 is the case if and only if G.C.D. (e,
ceey @y By v ooy hyye) = 1. Applying Theorem 5 to (7.3) we have N =
K¢N,(L*) and we note that K¢ is the number of distinct solutions u
modulo e of (7.2) for which G.C.D. (u,¢) = 1. However N,(Lx) is the
number of solutions x modulo e such that e;x; = 0 (mode) 2 =1, -,
n). Clearly N,(L*) = []%.e;. By Corollary 2
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1
92 = e" (1 _ )
P!e,N(lz—;I,:L/)>o p’f(:D,L) !

e h,
v )
e, N,

Now N(p, L’) > 0 if and only if the system ew; + h; = 0 (mod p) (¢ =
1, ---,n) is solvable, that is, if and only if G.C.D. (p, ¢;)|h; or if and
only if pte; or p|G.C.D (¢;, ;) ¢ =1, -+, m). Also r(p, L) is just
the number of the ¢; (¢ =1, --+, n) not divisible by p. This completes
the proof.

We now obtain a generalization of Steven’s result [6] (see
Corollary 3).

where

COROLLARY 10. The equation
G.C.D. (@, + b, +++,a,2, + b,,¢) =4,
where
G.C.D.(a, *++,a,,d) =1,
1s solvable if and only if
dic, G.C.D. (a;, d)|b; ¢ =1, ---, m),
G.C.D. (ay, *+=y @y by +=+, b,,¢) = 1.

The number of solution modulo ¢ is given by

1 G.C.D. (a:, d)-(¢/dy~ TI (1 _ ) vn(p)>,
=t picld P
where v;(p) G =1, « -+, n) is the number of incongruent solutions modulo

7 a; % 4 b;
P9 GCD. (@, d" " GLC.D. (a,d)

= 0 (mod p).

Proof. The necessary and sufficient conditions for solvability are
immediate from Theorem 1. When solvable we calculate the number
N of solutions modulo ¢ using Theorem 5. Thus we require the number
of distinct u modulo ¢ with G.C.D. (u,¢) = 1 such that

a;x; + bi = dui (mod de) (’L‘ = 1, RN /n)

is solvable, that is,
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(as/dy)x; + (b;/d;) = (d/d;)u; (mod d/d;-e)

where d, = G.C.D (a;,d) (t =1, +++, n).
This is solvable if and only if

G.C.D. ((a:i/dy), (d/d;)e) | (d/d)u; — (b;/d)(@ =1, <+, m),
that is, if and only if,
(d/d)u; = (b;/d;) (mod G.C.D. ((a;/d)), e) (i =1, «++,m) .
This system is equivalent to
u; = h; (mod G.C.D. (a;/d;,e) 1 =1, -+, m),

where h; = (d/d;,)~'b;/d; and (d/d,)™"* is an inverse of d/d; modulo G.C.D.
(a;/d;, €) since G.C.D. (d/d;, a;/d;ye) = 1. Thus by Corollary 9 the
number of such u is

" ) 1
H&eD. (e(ai/di), e) 11 (1 - W) ’

where the dash () means that the product is taken over those ple
such that pla;/d; or »|G.C.D. (a;/d;, b;/d;), 7 =1, -+, n, as p|G.C.D.
(a;/d;, e, b;) if and only if p|G.C.D. (a;/d;, e, b;/d;) because (d/d)h; =
b;/d; (mod G.C.D. (a;/d;, ¢) and G.C.D. (d/d;, a;/d;) =1 (t =1, -+, n).
Also r(p) is the number of a;/d; (¢ =1, ---, n) not divisible by p.
Next we need the number of incongruent x modulo de such that

ax; =0 (modde) (1 =1, -+, m) .
This is just

3

H G.C.D. (a;, de)

n:‘_‘[s u{:’s i

d G.C.D. (a-;/d»;’ (d/dz)e)

i

[ d; G.C.D. (aifd; o) -

Hence by Theorem 5 the required number of solutions is

@ o I(1-—5),

Ple

where the dash () means that the product is taken over those pl|e
such that p|a;/d; or p|G.C.D. (a;/d;, b;/d;), 2 = 1, «++, n. This number
is

1 deengy (1 — 222y

Ple
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as

1: p*ai/di’
vi(p) = 10, pla;/d;, p t b;/d; ,
ps pla;/d;, p|biJd; .

Finally we state that all formulas are easily modified if we do
not assume g = G.C.D. {, ---, 1, d) = 1 (See introduction, Theorem 1).

For example we list

THEOREM 2. If &5° # @ the mintmum modulus M with respect
to (1.1) is given by

Mg:dl H D .

ple,N(paj,L'[g)>0

COROLLARY 4'. If G.C.D. (d,e) =1 then the number N; of solu-~
tions of (1.1) modulo Ms is

1
=N& ) T (1 ) -

ple,N{pdy,L'[g)>0 \
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