Pacific Journal of Mathematics

ON SOLVABLE O*-GROUPS

DONALD PAUL MINASSIAN

Vol. 39, No. 1

May 1971

ON SOLVABLE O*-GROUPS

D. P. MINASSIAN

The purpose of this paper is to prove the existence of O^* -groups of arbitrary solvable length, as well as of non-solvable O^* -groups.

By a partial order for a group G we mean a reflexive, antisymmetric and transitive relation, \leq , on G such that if g and h are elements of G and $g \leq h$, then $xgy \leq xhy$ for all x and y in G. If also any two elements g and h of G are comparable (i.e., either $g \leq h$ or $h \leq g$), then the partial order for G is called a *total* (or *full*, or *linear*) order. The group G is an O^{*}-group if any partial order for G is included in some total order for G.

A group G is solvable of length n, where n is a positive integer, if the derived chain of G reaches the unit subgroup, E, in n steps:

$$G = G^{\scriptscriptstyle 1} \supseteq G^{\scriptscriptstyle 2} \supseteq \cdots \supseteq G^{\scriptscriptstyle n} \supseteq G^{\scriptscriptstyle n+1} = E,$$

where G^{i+1} is the derived group of G^i (denoted below by $G^{i+1} = [G^i, G^i]$).

It has been shown that non-abelian free groups are not O^{*}-groups ([1], [2], [3], [4], [6]). Further, Kargapolov [5] and Kargapolov, Kokorin and Kopytov [6] have produced solvable groups which are not O^{*}-groups even though they admit a full order: these are the free r-step solvable groups on k generators for $r \ge 3$ and $k \ge 2$. In view of these results one may ask if there exist solvable O^{*}-groups of arbitrary length, and nonsolvable O^{*}-groups. The answers are affirmative.

THEOREM. For every positive integer m there exists an O^{*}-group G that is solvable of length m.

Proof. Let F be the free group on k generators for some fixed $k \ge 2$. Let F_i be the *i*th term in the lower central series for F, where $F_1 = F$, and let F^i be the *i*th derived group for F, where $F^1 = F$. Consider F/F_i , the free nilpotent group of class i with k generators. By varying i we shall obtain the desired groups G of the theorem.

We first claim that F/F_i is torsion-free for every positive integer i. If not, then for some i there exists an element $a \in F$ and a positive integer p such that $a \notin F_i$, but $a^p \in F_i$. Now $a \in F_h - F_{h+1}$ for some positive integer $h \leq i-1$. Thus $a^p \in F_i \subseteq F_{h+1}$, and so F_h/F_{h+1} is not torsion-free. On the other hand, Witt's theorem (see, e.g., [8, p. 41]) states that F_h/F_{h+1} is a free abelian group (and hence torsion-

free), a contradiction. Thus F/F_i is torsion-free, as claimed.

Malcev [9] has shown that a torsion-free nilpotent group is an O^* -group. Hence F/F_i is an O^* -group for every positive integer *i*. Now for every such *i* the solvable length of F/F_i is finite, since F/F_i is nilpotent. Thus we shall complete our proof by establishing the following lemma.

LEMMA. For every positive integer m, there exists an integer n such that solvable length of F/F_n is m.

Proof. We first note that for every positive integer i, there exists an integer j such that $F_j \not\supseteq F^i$. This follows from the fact that $F^i \neq E$ for each i (hence F is not solvable), together with the theorem of Magnus (cf. [8, p. 38]) which asserts that $\bigcap_{i=1}^{\infty} F_i = E$. We next show that for each i and j,

(1)
$$(F/F_j)^i = F^i F_j / F_j.$$

Indeed, it is readily seen that if A and B are subgroups of a group G and if B is invariant under conjugation by elements of A, then $(AB/B)^2 = A^2B/B$. From this, an induction on *i* shows that for a normal subgroup N of a group G it is true that $(G/N)^i = G^iN/N$ for all *i*, which implies the desired result.

Note that for each *i* there exists *J* such that for $j \ge J$, the solvable length of F/F_j exceeds *i*. This follows from (1) and the fact that, by our first assertion, we can choose *J* such that $F_J \not\cong F^i$. In particular, then, the solvable length of F/F_j is unbounded with increasing *j*. Note also that the solvable length of F/F_{j+1} exceeds the solvable length of F/F_j by at most 1. For if F/F_j is solvable of length r-1, then $(F/F_j)^r = E$. Thus, by (1) we have $F^rF_j/F_j = E$, which implies $F^r \subseteq F_j$. On the other hand, F/F_{j+1} has solvable length $\le r$ since (again using (1))

$$(F/F_{j+1})^{r+1} = [(F/F_{j+1})^r, (F/F_{j+1})^r] \ = [F^r F_{j+1}/F_{j+1}, F^r F_{j+1}/F_{j+1}] \subseteq [F_j/F_{j+1}, F_j/F_{j+1}] = E,$$

where \subseteq holds since both F^r and F_{j+1} are subsets of F_j , and the final equality derives from the fact that F_j/F_{j+1} is abelian by Witt's theorem (above). The lemma follows at once from these results and the fact that $F/F_2 = F_1/F_2$ has solvable length 1 by Witt's theorem.

The proof of the theorem is now complete.

COROLLARY. There exist nonsolvable O^{*}-groups.

Proof. Kargapolov [5] and Kokorin [7] have shown that the re-

stricted direct product of O^{*}-groups is an O^{*}-group. Thus the restricted direct product, $G = \prod_{i=1}^{\infty} F/F_i$, of the groups F/F_i is an O^{*}-group. If G were solvable of length m, then each F/F_i would have solvable length $\leq m$; for if a subgroup $H \subseteq G$, then $H^k \subseteq G^k$ for every k. Since this contradicts the fact noted above that the solvable length of F/F_j is unbounded with increasing j, G is a non-solvable O^{*}-group.

Note. The mapping φ of F into the unrestricted (or complete) direct product, $\prod_{i=1}^{\infty} F/F_i$, of the groups F/F_i given by

$$\varphi(a) = (aF_1, \dots, aF_n, \dots)$$
 for every $a \in F$

is a monomorphism by Magnus' theorem, above. Since F is not an O^{*}-group (see [1], [4], or [6]), we have an immediate example of a subdirect product of O^{*}-groups which is not itself an O^{*}-group. (In [5], Kargapolov uses some of the groups F/F_i to show that the class of O^{*}-groups is not closed under formation of unrestricted direct products.)

Acknowledgement. I acknowledge the generously donated help of Professor E. F. Krause (University of Michigan), my adviser for the doctoral dissertation on which this paper is based.

References

1. L. Fuchs, On orderable groups, Proc. Internat. Conf. Theory of Groups (Canberra, 1965), 89-98, Gordon and Breach, New York, 1967.

2. L. Fuchs and E. Sasiada, *Note on orderable groups*, Annales Universitatis Scientiarum Budapestinensis de Rolando Eotvos Nominatae, Sectio Mathematica (1964), 13-17.

3. W. C. Holland, *Extensions of Ordered Algebraic Structures*, Doctoral Thesis, Tulane Univerity, 1961.

4. H. Hollister, Groups in which every maximal partial order is isolated, Proc. Amer. Math. Soc., **19** (1968), 467-469.

5. M. I. Kargapolov, *Fully orderable groups* (Russian), Algebra i Logika Sem., (6) **2** (1963), 5-14.

6. M. I. Kargapolov, A. I. Kokorin, and V. M. Kopytov, On the theory of orderable groups (Russian), Algebra i Logika Sem., (6) 4 (1965), 21-27.

7. A. I. Kokorin, Ordering a direct product of ordered groups (Russian), Ural. Gos. Univ. Mat. Zap., (3) 4 (1963), 95-96.

8. A. G. Kurosh. The Theory of Groups, vol. ii, Chelsea, New York, 1956.

9. A. I. Malcev, On the completion of group order (Russian), Trudy Mat. Inst. Steklov, **38** (1951), 173-175.

Received August 25, 1970 and in revised form April 12, 1971.

BUTLER UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305

C. R. HOBBY University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * * AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics Vol. 39, No. 1 May, 1971

Charles A. Akemann, A Gelfand representation theory for C*-algebras	1
Sorrell Berman, Spectral theory for a first-order symmetric system of	
ordinary differential operators	13
Robert L. Bernhardt, III, <i>On splitting in hereditary torsion theories</i>	31
J. L. Brenner, Geršgorin theorems, regularity theorems, and bounds for	
determinants of partitioned matrices. II. Some determinantal	
identities	39
Robert Morgan Brooks, <i>On representing</i> F^* -algebras	51
Lawrence Gerald Brown, <i>Extensions of topological groups</i>	71
Arnold Barry Calica, <i>Reversible homeomorphisms of the real line</i>	79
J. T. Chambers and Shinnosuke Oharu, Semi-groups of local Lipschitzians in	
a Banach space	89
Thomas J. Cheatham, <i>Finite dimensional torsion free rings</i>	113
Byron C. Drachman and David Paul Kraines, A duality between	
transpotence elements and Massey products	119
Richard D. Duncan, Integral representation of excessive functions of a	
Markov process	125
George A. Elliott, An extension of some results of Takesaki in the reduction	
theory of von Neumann algebras	145
Peter C. Fishburn and Joel Spencer, <i>Directed graphs as unions of partial</i>	
orders	149
	149 163
orders	
<i>orders</i>	163
<i>orders</i> Howard Edwin Gorman, <i>Zero divisors in differential rings</i> Maurice Heins, <i>A note on the Löwner differential equation</i>	163 173
orders	163 173
ordersHoward Edwin Gorman, Zero divisors in differential ringsMaurice Heins, A note on the Löwner differential equationsLouis Melvin Herman, Semi-orthogonality in Rickart ringsDavid Jacobson and Kenneth S. Williams, On the solution of linear G.C.D.	163 173 179
orders	163 173 179 187
orders Howard Edwin Gorman, Zero divisors in differential rings Maurice Heins, A note on the Löwner differential equations Louis Melvin Herman, Semi-orthogonality in Rickart rings David Jacobson and Kenneth S. Williams, On the solution of linear G.C.D. equations Michael Joseph Kallaher, On rank 3 projective planes	163 173 179 187 207
orders Howard Edwin Gorman, Zero divisors in differential rings Maurice Heins, A note on the Löwner differential equations Louis Melvin Herman, Semi-orthogonality in Rickart rings David Jacobson and Kenneth S. Williams, On the solution of linear G.C.D. equations Michael Joseph Kallaher, On rank 3 projective planes Donald Paul Minassian, On solvable O*-groups	163 173 179 187 207 215
orders Howard Edwin Gorman, Zero divisors in differential rings Maurice Heins, A note on the Löwner differential equations Louis Melvin Herman, Semi-orthogonality in Rickart rings David Jacobson and Kenneth S. Williams, On the solution of linear G.C.D. equations Michael Joseph Kallaher, On rank 3 projective planes Donald Paul Minassian, On solvable O*-groups Nils Øvrelid, Generators of the maximal ideals of $A(D)$	163 173 179 187 207 215
ordersHoward Edwin Gorman, Zero divisors in differential ringsMaurice Heins, A note on the Löwner differential equationsLouis Melvin Herman, Semi-orthogonality in Rickart ringsDavid Jacobson and Kenneth S. Williams, On the solution of linear G.C.D.equationsMichael Joseph Kallaher, On rank 3 projective planesDonald Paul Minassian, On solvable O*-groupsNils Øvrelid, Generators of the maximal ideals of $A(\bar{D})$ Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into semigroups having at most one idempotent	163 173 179 187 207 215 219
orders Howard Edwin Gorman, Zero divisors in differential rings Maurice Heins, A note on the Löwner differential equations Louis Melvin Herman, Semi-orthogonality in Rickart rings David Jacobson and Kenneth S. Williams, On the solution of linear G.C.D. equations Michael Joseph Kallaher, On rank 3 projective planes Donald Paul Minassian, On solvable O*-groups Nils Øvrelid, Generators of the maximal ideals of A(D) Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into	163 173 179 187 207 215 219 225
ordersHoward Edwin Gorman, Zero divisors in differential ringsMaurice Heins, A note on the Löwner differential equationsLouis Melvin Herman, Semi-orthogonality in Rickart ringsDavid Jacobson and Kenneth S. Williams, On the solution of linear G.C.D.equationsMichael Joseph Kallaher, On rank 3 projective planesDonald Paul Minassian, On solvable O*-groupsNils Øvrelid, Generators of the maximal ideals of $A(D)$ Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into semigroups having at most one idempotentRobert Raphael, Rings of quotients and π -regularity	163 173 179 187 207 215 219 225 229
ordersHoward Edwin Gorman, Zero divisors in differential ringsMaurice Heins, A note on the Löwner differential equationsLouis Melvin Herman, Semi-orthogonality in Rickart ringsDavid Jacobson and Kenneth S. Williams, On the solution of linear G.C.D.equationsMichael Joseph Kallaher, On rank 3 projective planesDonald Paul Minassian, On solvable O*-groupsNils Øvrelid, Generators of the maximal ideals of $A(D)$ Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into semigroups having at most one idempotentRobert Raphael, Rings of quotients and π -regularityJ. A. Siddiqi, Infinite matrices summing every almost periodic sequenceRaymond Earl Smithson, Uniform convergence for multifunctions	163 173 179 187 207 215 219 225 229 235
ordersHoward Edwin Gorman, Zero divisors in differential ringsMaurice Heins, A note on the Löwner differential equationsLouis Melvin Herman, Semi-orthogonality in Rickart ringsDavid Jacobson and Kenneth S. Williams, On the solution of linear G.C.D.equationsMichael Joseph Kallaher, On rank 3 projective planesDonald Paul Minassian, On solvable O*-groupsNils Øvrelid, Generators of the maximal ideals of $A(D)$ Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into semigroups having at most one idempotentRobert Raphael, Rings of quotients and π -regularityJ. A. Siddiqi, Infinite matrices summing every almost periodic sequence	163 173 179 187 207 215 219 225 229 235
ordersHoward Edwin Gorman, Zero divisors in differential ringsMaurice Heins, A note on the Löwner differential equationsLouis Melvin Herman, Semi-orthogonality in Rickart ringsDavid Jacobson and Kenneth S. Williams, On the solution of linear G.C.D. equationsMichael Joseph Kallaher, On rank 3 projective planesMichael Joseph Kallaher, On rank 3 projective planesNils Øvrelid, Generators of the maximal ideals of $A(D)$ Nils Øvrelid, Generators of the maximal ideals of $A(D)$ Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into semigroups having at most one idempotentRobert Raphael, Rings of quotients and π -regularityJ. A. Siddiqi, Infinite matrices summing every almost periodic sequenceRaymond Earl Smithson, Uniform convergence for multifunctionsThomas Paul Whaley, Mulitplicity type and congruence relations in	 163 173 179 187 207 215 219 225 229 235 253