Pacific Journal of Mathematics

GENERATORS OF THE MAXIMAL IDEALS OF $A(\overline{D})$

NILS ØVRELID

Vol. 39, No. 1

May 1971

GENERATORS OF THE MAXIMAL IDEALS OF $A(\overline{D})$

NILS ØVRELID

Let $A = A(\overline{D})$ be the sup norm algebra of functions continuous in \overline{D} and holomorphic in D, where D is a bounded, strictly pseudoconvex domain in \mathbb{C}^n . This paper gives necessary and sufficient local conditions that a subfamily of Agenerates the maximal ideal $\mathscr{M}_w(\overline{D})$ of functions in A vanishing at $w \in \overline{D}$. In particular, it shows that $\mathscr{M}_w(\overline{D})$ is generated by $z_1 - w_1, \dots, z_n - w_n$ when $W \in D$.

In [3], Gleason shows that if m is an (algebraically) finitely generated maximal ideal of a commutative Banach algebra A, the maximal ideal space \mathcal{M}_A can be given an analytic structure near m, in terms of which the Gelfand transforms of the elements of A are holomorphic functions.

In a sense, the results of this paper go in the opposite direction. We consider a bounded domain D in C^* , with C^2 strictly pseudoconvex boundary, and study the algebra $A = A(\overline{D})$ of functions continuous on \overline{D} and holomorphic in D. By a recent result, Henkin [4], Kerzman [7], Lieb [9], A equals the closure in $C(\overline{D})$ of the algebra $O(\overline{D})$ of functions holomorphic in some neighbourhood of \overline{D} , from which it follows that $\mathcal{M}_A \approx \overline{D}$.

We first fix the notation. If $w \in \overline{D}$, \mathscr{M}_w denotes the maximal ideal of the ring O_w of germs of holomorphic functions at w, while $\mathscr{M}_w(\overline{D})$ is the maximal ideal in A of functions vanishing at w. If f is a function on some neighbourhood of w, f_w denotes the germ of f at w.

THEOREM 1. Let $w \in D$, and $f_1, \dots, f_N \in A$. Then f_1, \dots, f_N generate $\mathscr{M}_w(\overline{D})$ if and only if

(1) f_{1_w}, \dots, f_{N_w} generate \mathcal{M}_w , and

(2) w is the only common zero of f_1, \dots, f_N in \overline{D} .

COROLLARY. If $w \in D$, $z_1 - w_1, \dots, z_n - w_n$ generate $\mathscr{M}_w(\overline{D})$.

Below we give the more general theorem 2, which also gives a similar characterization of generators of $\mathscr{M}_w(\bar{D})$ when $w \in \partial D$. When n = 2, Kerzman and Nagel [8] have shown that $z_1 - w_1$ and $z_2 - w_2$ generate $\mathscr{M}_w(\bar{D})$ when $w \in D$, as well as similar results for algebras with Hölder norms. I want to thank Dr. Kerzman for sending me a copy of his thesis [7], where these results are stated.

The main tool in the proof is the following result, which is proved in [11]:

LEMMA 1. Suppose $u \in C^{\infty}_{(0,q)}(D)$ is bounded, with $\overline{\partial}u = 0, q \ge 1$. Then there exists a $v \in C^{\infty}_{(0,q-1)}(D)$ with $\overline{\partial}v = u$, such that v has a continuous extension to \overline{D} .

A closely related result is given in Lieb [10], while a stronger result for (0, 1)-forms, involving Hölder estimates, is given in Kerzman [7].

It is convenient to prove first a more general result. If U is open in \overline{D} , let H(U) denote functions in C(U) that are holomorphic in $D \cap U$. When $w \in \overline{D}$, we define $H_w = \varinjlim_{U \ni w} H(U)$, so H_w is the space of germs at w of continuous functions on \overline{D} that are holomorphic in D. It is easy to see that H is the sheaf of A-holomorphic functions in the sense of [2].

PROPOSITION 1. Let D be as above, $w \in \overline{D}$, and suppose f_1, \dots, f_N have w as their only common zero. We let I denote the ideal in A generated by f_1, \dots, f_N , and I_w the ideal in H_w generated by f_{1w}, \dots, f_N , f_N

Proof. By assumption, we may write $f = \sum_{i=1}^{N} g_i \cdot f_i$ on a neighbourhood U of w in \overline{D} , with $g_1, \dots, g_N \in H(U)$. We want to write $f = \sum_{i=1}^{N} h_i \cdot f_i$, with $h_1, \dots, h_N \in A$, and shall first solve the problem differentiably. As the sets $N_i = \{z \in \overline{D} \setminus \{w\}: f_i(z) = 0\}, i = 1, \dots, N$, are closed in $C^n \setminus \{w\}$, it is well known how to construct $\widetilde{\varphi}_1, \dots, \widetilde{\varphi}_N$ with $\widetilde{\varphi}_i = 0$ on a neighbourhood of $N_i, i = 1, \dots, N$, that form a C^{∞} partition of unity on $C^n \setminus \{w\}$. Choose $\varphi_0 \in C_0^{\infty}(U')$, where $U' \cap \overline{D} = U$, with $\varphi_0 = 1$ on a neighbourhood U_1 of w, and define $\varphi_i = (1 - \varphi_0) \cdot \widetilde{\varphi}_i, i = 1, \dots, N$.

If we define

$$g_i' = arphi_0 m{\cdot} g_i + rac{arphi_i m{\cdot} f}{f_i}$$
, clearly $\sum\limits_{i=1}^N g_i' m{\cdot} f_i = f$ on $ar{D}m{.}$

The $g'_i s \in C^{\infty}(D) \cap C(\overline{D})$, and are holomorphic in $U_1 \cap D$.

We want to use Lemma 1 to modify the g_i 's to get h_i 's in A. To handle the combinatorial difficulties, we apply the homological argument of [6].

NOTATION. $L_r = \{u \in C^{\infty}_{(0,r)}(D), u \text{ and } \overline{\partial}u \text{ have bounded coefficients}\},$ while $L_r^s = L_r \bigotimes_C \bigwedge^s C^N, 0 \leq r, s.$

If we choose a basis e_1, \dots, e_N in C^N , the elements in L_r^s may be written uniquely as $\sum_{|I|=s} u_I \otimes e^I$, where $u_I \in L_r$, $e^I = e_{i_1} \wedge \dots \wedge e_{i_s}$, and we sum over strictly increasing sequences $I = (i_1, \dots, i_s)$. We define $\overline{\partial}$ on L_r^s by $\overline{\partial}(u \otimes \omega) = (\overline{\partial}u) \otimes \omega$ and linearity. Clearly $ar{\partial} L^s_r \subset L^s_{r+1}$, and lemma 1 gives:

LEMMA 1'. If $k \in L_r^s$ and $\bar{\partial}k = 0$, $r \ge 1$, there exists a $k' \in L_{r-1}^s$, such that $\bar{\partial}k' = k$, and k' has a continuous extension to \bar{D} .

The product determined by $(u \otimes \omega) \cdot (u' \otimes \omega') = (u \wedge u') \otimes (\omega \wedge \omega')$ is clearly a bilinear map $L_r^s \times L_{r'}^{s'} \to L_{r+r'}^{s+s'}$.

Let e_1^*, \dots, e_N^* be the reciprocal basis to e_1, \dots, e_N , so $\langle e_i^*, e_j \rangle = \delta_{ij}$. We define $P_f: L_r^s \to L_r^{s-1}$ by

$$P_f(d \otimes \omega) = \sum_{i=1}^N (f_i \cdot u) \otimes (e_i^* \sqcup \omega)$$
, and linearity.

(For the definition of], se [12] Ch. 1.)

 $P_f: L_r^1 \to L_r^0$ maps $\sum_{i=1}^N u_i \otimes e_i$ to $\sum_{i=1}^N f_i \cdot u_i$; in particular, $P_f g' = f$, when $g' = \sum_{i=1}^N g'_i \otimes u_i$.

A simple computation gives $P_f^2 = 0$, while the derivation property of $\ \ \,$ gives

(i)
$$P_f(k \cdot k') = (P_f k) \cdot k' + (-1)^s k \cdot P_f k'$$

when $k \in L_r^s$.

Let $M_r^s = \{k \in L_r^s : k \mid_{U_1} = 0\}.$

LEMMA 2. The complex $0 \leftarrow M_r^0 \xrightarrow{P_f} M_r^1 \xrightarrow{P_f} \cdots \xrightarrow{P_f} M_r^N \leftarrow 0$ is exact.

Proof. Let $\varphi \in C^{\infty}(\mathbb{C}^N)$ be zero near w and one outside U_1 . We put $k_0 = \sum_{i=1}^N (\varphi \cdot \widetilde{\varphi}_i) / f_i \otimes e_i$. Clearly $k_0 \in L_0^1$, and $P_f k_0 \in L_0^0$ is identically one in $D \setminus U_1$. If $k \in M_r^s$ and $P_f k = 0$, $k_0 \cdot k \in M_r^{s+1}$, and by (i), $P_f(k_0 \cdot k) = (P_f k_0) \cdot k = k$.

As f_1, \dots, f_N are holomorphic in D, P_f and $\bar{\partial}$ commute.

LEMMA 3. If $k \in M_r^s$ and $P_f k = \overline{\partial} k = 0$, there exists a $k' \in L_r^{s+1}$, with $P_f k' = k$ and $\overline{\partial} k' = 0$.

This is trivially true when r > n, and the proof goes by downward induction on r. Suppose the lemma is valid for r + 1. By Lemma 2, there exists a $k_1 \in M_r^{s+1}$ with $P_f k_1 = k$. Clearly $\bar{\partial} M_r^{s+1} \subset M_{r+1}^{s+1}$, while $P_f \bar{\partial} k_1 = \bar{\partial} P_f k_1 = 0$. Using the induction hypothesis, we can find $k_2 \in L_{r+1}^{s+2}$ with $P_f k_2 = \bar{\partial} k_1$ and $\bar{\partial} k_2 = 0$. By Lemma 1', $k_2 = \bar{\partial} k_3$, with $k_3 \in L_r^{s+2}$. If we put $k' = k_1 - P_f k_3$, we get $k' \in L_r^{s+1}$, with $\bar{\partial} k' = \bar{\partial} k_1 - P_f \bar{\partial} k_3 = 0$, and $P_f k' = P_f k_1 - P_f^2 k_3 = k$. This completes the induction step. Proof of Proposition 1. As the g'_i s are holomorphic in $U_1 \cap D$, $\overline{\partial}g' \in M_1^1$. Applying Lemma 1' and Lemma 3, we find a $k \in L_0^2$, with $\overline{\partial}P_f k = P_f \overline{\partial}k = \overline{\partial}g'$, such that k is continuous on \overline{D} . If $h = g' - P_f k$, $\overline{\partial}h = 0$. Writing $h = \sum_{i=1}^N h_i \otimes e_i$, this means that $h_1, \dots, h_N \in A$, and $\sum_{i=1}^N h_i \cdot f_i = f$.

THEOREM 2. Let $w \in \overline{D}$, and let M_w denote the unique maximal ideal of H_w . The family $(f_i)_{i \in I}$ in A generates $\mathscr{M}_w(\overline{D})$ if and only if

- (1) $(f_{i_w})_{i \in I}$ generates M_w , and
- (2) w is the only common zero of functions f_i in \overline{D}

Proof. I. The sufficiency of (1) and (2): If $f \in \mathscr{M}_w(\overline{D})$, we have $f_w \in M_w$, and by (1) f_w belongs to some ideal $[f_{i_1,w}, \cdots, f_{i_M,w}]$. As $(z_1 - w_1)_w, \cdots, f(z_n - w_n)_w$ belong to M_w , the functions $z_i - w_i$; $i = 1, \dots, n$, may be expressed as linear combinations of functions $f_{i_{M+1}}, \dots, f_{i_p}$ in the family on some open neighbourhood V of w in \overline{D} . Then $f_{i_{M+1}}, \dots, f_{i_p}$ have w as their only common zero in V. By condition (2) and the compactness of $\overline{D} \setminus V$, there exist $f_{i_{p+1}}, \dots, f_{i_N}$ in the family with no common zeroes outside V. Now proposition 1 implies that $f \in [f_{i_1}, \dots, f_{i_N}]$.

II. The necessity of (1) and (2): If $(f_i)_{i \in I}$ generate $\mathscr{M}_w(\overline{D})$, condition (2) follows from the fact that A separates points in \overline{D} . Condition (1) follows from

PROPOSITION 2. The germs at w of elements in $\mathscr{M}_w(\bar{D})$ generate M_w .

The following proof of Proposition 2 was kindly communicated to me by Dr. R. M. Range, and replaces a more complicated argument of my own:

When $w \in D$, $z_1 - w_1, \dots, z_n - w_n$ generate $\mathscr{M}_w = M_w$. Thus we may assume $w \in \partial D$, and consider an $f \in H(U \cap \overline{D})$ with f(w) = 0, where U is some neighbourhood of w in C^n . We choose $\varphi \in C_0^{\infty}(U)$ such that $\varphi \equiv 1$ on a smaller neighbourhood V of w. As D is strictly pseudoconvex, we may extend it inside V to a strictly pseudoconvex domain D' containing w. As $\overline{\partial}(\varphi \cdot f)$ vanishes on $V \cap D$, it may be extended by zero to a smooth, bounded, $\overline{\partial}$ -closed (0, 1)-form ω on D'. By Lemma 1, the equation $\overline{\partial}g = \omega$ has a solution in $C^{\infty}(D') \cap C(\overline{D'})$, and we may assume g(w) = 0. As g is holomorphic in $D' \cap V$, we may write it near w as $g = \sum_{i=1}^n g_i(z_i - w_i)$, with g_1, \dots, g_n holomorphic. Thus $f_w = (\varphi \cdot f - g)_w + \sum_{i=1}^n g_{i_w}(z_i - w_i)_w$, and $\varphi \cdot f - g|_{\overline{D}} \in \mathscr{M}_w(\overline{D})$. When $w \in D$ and I is finite, Theorem 2 reduces to theorem 1. If $w \in \partial D$, it follows from Gleason's result that $\mathscr{M}_w(\overline{D})$ is not finitely generated. If M_w were finitely generated, it would by Proposition 2 be generated by finitely many elements of A, which implies by the argument of I that $\mathscr{M}_w(\overline{D})$ must be finitely generated. Thus M_w is not finitely generated when $w \in \partial D$. (This may also be proved in a more direct fashion).

Note. The Corollary to Theorem 1 has also been proved by G. M. Henkin in Bull. Acad. Polon. Sci., 24 (1971) 37-42, and by I. Lieb in Math. Ann., 190 (1970-71) 6-44, which contains a detailed version of [10].

References

1. J. Dieudonné, Foundations of Modern Analysis, Academic Press 1960.

2. T. W. Gamelin, Uniform Algebras, Prentice Hall 1969.

3. A. Gleason, Finitely generated ideals in Banach algebras, J. Math. Mech., 13 (1964), 125-32.

4. G. M. Henkin, Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sbornik, **78** (1969), 611-32. (Math. USSR Sbornik Vol. **7** (1969).)

5. L. Hörmander, Introduction to Complex Analysis in Several Variables, van Nostrand 1966.

6. _____, Generators of some rings of analytic functions, Bull. Amer. Math. Soc., **73** (1967), 943-49.

7. N. Kerzman, Hölder and L^p -estimates for solutions of $\bar{\partial}u = f$ in strongly pseudoconvex domains, Comm. Pure. Appl. Math. 24 (1971) 301-80.

8. N. Kerzman and A. Nagel, Finitely generated ideals in certain function algebras Journal of Functional Analysis. 7 (1971) 212-15.

9. I. Lieb, Ein approximationssatz auf streng pseudoconvexen gebieten, Math. Ann., **184** (1969), 56-60.

10. _____, Beschränktkeitsaussagen für den d"-operator, Nachr. Ak. Wiss. Gött. II. Math. Phys. Kl. 1970, 1, 7 p.

11. N. Øvrelid, Integral representation formulas and L^{p} -estimates for the $\overline{\partial}$ -equation, (to appear in Math. Scand.).

12. S. Sternberg, Lectures on Differential Geometry, Prentice Hall 1964.

Received August 6, 1970. Dr. Range's proof received June 28, 1971.

UNIVERSITETET I OSLO

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305

C. R. HOBBY University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * * AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics Vol. 39, No. 1 May, 1971

Charles A. Akemann, A Gelfand representation theory for C*-algebras	1
Sorrell Berman, Spectral theory for a first-order symmetric system of	
ordinary differential operators	13
Robert L. Bernhardt, III, <i>On splitting in hereditary torsion theories</i>	31
J. L. Brenner, Geršgorin theorems, regularity theorems, and bounds for	
determinants of partitioned matrices. II. Some determinantal	
identities	39
Robert Morgan Brooks, <i>On representing</i> F^* -algebras	51
Lawrence Gerald Brown, <i>Extensions of topological groups</i>	71
Arnold Barry Calica, <i>Reversible homeomorphisms of the real line</i>	79
J. T. Chambers and Shinnosuke Oharu, Semi-groups of local Lipschitzians in	
a Banach space	89
Thomas J. Cheatham, <i>Finite dimensional torsion free rings</i>	113
Byron C. Drachman and David Paul Kraines, A duality between	
transpotence elements and Massey products	119
Richard D. Duncan, Integral representation of excessive functions of a	
Markov process	125
George A. Elliott, An extension of some results of Takesaki in the reduction	
theory of von Neumann algebras	145
Peter C. Fishburn and Joel Spencer, <i>Directed graphs as unions of partial</i>	
orders	149
	149 163
orders	
<i>orders</i>	163
<i>orders</i> Howard Edwin Gorman, <i>Zero divisors in differential rings</i> Maurice Heins, <i>A note on the Löwner differential equation</i>	163 173
orders	163 173
ordersHoward Edwin Gorman, Zero divisors in differential ringsMaurice Heins, A note on the Löwner differential equationsLouis Melvin Herman, Semi-orthogonality in Rickart ringsDavid Jacobson and Kenneth S. Williams, On the solution of linear G.C.D.	163 173 179
orders	163 173 179 187
orders Howard Edwin Gorman, Zero divisors in differential rings Maurice Heins, A note on the Löwner differential equations Louis Melvin Herman, Semi-orthogonality in Rickart rings David Jacobson and Kenneth S. Williams, On the solution of linear G.C.D. equations Michael Joseph Kallaher, On rank 3 projective planes	163 173 179 187 207
orders Howard Edwin Gorman, Zero divisors in differential rings Maurice Heins, A note on the Löwner differential equations Louis Melvin Herman, Semi-orthogonality in Rickart rings David Jacobson and Kenneth S. Williams, On the solution of linear G.C.D. equations Michael Joseph Kallaher, On rank 3 projective planes Donald Paul Minassian, On solvable O*-groups	163 173 179 187 207 215
orders Howard Edwin Gorman, Zero divisors in differential rings Maurice Heins, A note on the Löwner differential equations Louis Melvin Herman, Semi-orthogonality in Rickart rings David Jacobson and Kenneth S. Williams, On the solution of linear G.C.D. equations Michael Joseph Kallaher, On rank 3 projective planes Donald Paul Minassian, On solvable O*-groups Nils Øvrelid, Generators of the maximal ideals of $A(D)$	163 173 179 187 207 215
ordersHoward Edwin Gorman, Zero divisors in differential ringsMaurice Heins, A note on the Löwner differential equationsLouis Melvin Herman, Semi-orthogonality in Rickart ringsDavid Jacobson and Kenneth S. Williams, On the solution of linear G.C.D.equationsMichael Joseph Kallaher, On rank 3 projective planesDonald Paul Minassian, On solvable O*-groupsNils Øvrelid, Generators of the maximal ideals of $A(\bar{D})$ Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into semigroups having at most one idempotent	163 173 179 187 207 215 219
orders Howard Edwin Gorman, Zero divisors in differential rings Maurice Heins, A note on the Löwner differential equations Louis Melvin Herman, Semi-orthogonality in Rickart rings David Jacobson and Kenneth S. Williams, On the solution of linear G.C.D. equations Michael Joseph Kallaher, On rank 3 projective planes Donald Paul Minassian, On solvable O*-groups Nils Øvrelid, Generators of the maximal ideals of A(D) Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into	163 173 179 187 207 215 219 225
ordersHoward Edwin Gorman, Zero divisors in differential ringsMaurice Heins, A note on the Löwner differential equationsLouis Melvin Herman, Semi-orthogonality in Rickart ringsDavid Jacobson and Kenneth S. Williams, On the solution of linear G.C.D.equationsMichael Joseph Kallaher, On rank 3 projective planesDonald Paul Minassian, On solvable O*-groupsNils Øvrelid, Generators of the maximal ideals of $A(D)$ Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into semigroups having at most one idempotentRobert Raphael, Rings of quotients and π -regularity	163 173 179 187 207 215 219 225 229
ordersHoward Edwin Gorman, Zero divisors in differential ringsMaurice Heins, A note on the Löwner differential equationsLouis Melvin Herman, Semi-orthogonality in Rickart ringsDavid Jacobson and Kenneth S. Williams, On the solution of linear G.C.D.equationsMichael Joseph Kallaher, On rank 3 projective planesDonald Paul Minassian, On solvable O*-groupsNils Øvrelid, Generators of the maximal ideals of $A(D)$ Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into semigroups having at most one idempotentRobert Raphael, Rings of quotients and π -regularityJ. A. Siddiqi, Infinite matrices summing every almost periodic sequenceRaymond Earl Smithson, Uniform convergence for multifunctions	163 173 179 187 207 215 219 225 229 235
ordersHoward Edwin Gorman, Zero divisors in differential ringsMaurice Heins, A note on the Löwner differential equationsLouis Melvin Herman, Semi-orthogonality in Rickart ringsDavid Jacobson and Kenneth S. Williams, On the solution of linear G.C.D.equationsMichael Joseph Kallaher, On rank 3 projective planesDonald Paul Minassian, On solvable O*-groupsNils Øvrelid, Generators of the maximal ideals of $A(D)$ Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into semigroups having at most one idempotentRobert Raphael, Rings of quotients and π -regularityJ. A. Siddiqi, Infinite matrices summing every almost periodic sequence	163 173 179 187 207 215 219 225 229 235
ordersHoward Edwin Gorman, Zero divisors in differential ringsMaurice Heins, A note on the Löwner differential equationsLouis Melvin Herman, Semi-orthogonality in Rickart ringsDavid Jacobson and Kenneth S. Williams, On the solution of linear G.C.D. equationsMichael Joseph Kallaher, On rank 3 projective planesMichael Joseph Kallaher, On rank 3 projective planesNils Øvrelid, Generators of the maximal ideals of $A(D)$ Nils Øvrelid, Generators of the maximal ideals of $A(D)$ Mohan S. Putcha and Julian Weissglass, A semilattice decomposition into semigroups having at most one idempotentRobert Raphael, Rings of quotients and π -regularityJ. A. Siddiqi, Infinite matrices summing every almost periodic sequenceRaymond Earl Smithson, Uniform convergence for multifunctionsThomas Paul Whaley, Mulitplicity type and congruence relations in	 163 173 179 187 207 215 219 225 229 235 253