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Each commutative ring has a coreflection R in the
category of commutative regular rings. We use the basic
properties of R to obtain globalization theorems for finite
generation and for projectivity of R-modules.

1. Preliminaries. A detailed description of the ring R may be
found in [8]. Here we list without proofs the facts that will be
needed. We assume that everything is unitary, but not necessarily
commutative. However, R will always denote an arbitrary com-
mutative ring. All unspecified tensor products are taken over R.
For each ac¢ R and each PecSpec (R), let a(P) be the image of a
under the obvious map R — R,/PR,. Then R is the subring 1I-Rs/PR»
consisting of finite sums of elements [a, b], where [a, b] is the element
whose P™ coordinate is 0 if be P and a(P)/b(P) if b¢ P. There is a
natural homomorphism @: R — R taking @ to [a,1]. The ring R is
regular (in the sense of von Neumann). The statement that Ris a
coreflection means simply that each homomorphism from R into a
commutative regular ring factors uniquely through .

The map Spec (®): Spec () — Spec (R) is one-to-one and onto; for
each PeSpec(R) we let P be the corresponding prime (= maximal)
ideal of R.

If A is an R-module and Pe Spec (R), then A,/PA, and (AQR)s
are vector spaces over R,/PR, and R respectively. The map
®: R— R induces an isomorphism R,/PR, = R3, and, under the
identification, A,/PA, and (A ® R); are isomorphic vector spaces.

2. Globalization theorems.

LEMMA. If AQR =0 and A, is locally finitely generated then
A= 0.

Proof. For each prime P, A,/PA, = 0, by the last paragraph of
§ 1. Since A, is finitely generated over R,, Nakayama’s lemma im-
plies that A, = 0 for each PecSpec (R). Therefore A = 0.

THEOREM 1. Assume (A®}§) is finitely generated over R, and
that Ay is either locally free or locally finitely generated. Then Ay
is fimitely generated.
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Proof. Assume Aj is locally free. Then, for each prime P, A4,
is a direct sum of, say, £ copies of R,. Then A,/PA, is a direct
sum of k£ copies of R,/PR,. But since (A®I§) is finitely generated
over IAE, A,/PA, is finite dimensional over R,/PR,. Thus & is finite,
and we conclude that A, is locally finitely generated.

Now, if A, is not finitely generated, we can express A as a well-
ordered union of submodules A, each of which requires fewer
generators than A. We will get a contradiction by showing that
some A, = A. Let B,=Im(A.Q R— AR®R). Since

ARR=1mA4,QR, ARR=UB..

a

Since the B, are nested and (A®R) is ﬁmtely generated over R,
some B, —A®R that is, A, ®R—»A®R Let C = A/A,. Then
C ® R = Coker (A, ® R—A ® R) =0, and C, is certalnly locally
finitely generated. By the lemma, C = 0, and 4, = A.

THEOREM 2. Let A, be finitely generated and flat, and assume
(AQ R) is R-projective. Then A, is projective.

Proof. By Chase’s theorem [3, Theorem 4.1] it is sufficient to
show that A, is finitely related. Let 0 - K—F—A—0 be an
exact sequence, with F, free of finite rank. This sequence splits
locally, so K is locally finitely generated. Since A, is flat, the long
exact sequence of Tor shows that 0 ~ KQR >FRR—ARQR—0
is exact. This sequence splits, so (K Q }?) is finitely generated over
R. By Theorem 1, K, is finitely generated.

3. Awpplications. The following result generalizes the well-
known fact that over a noetherian ring every finitely generated flat
module is projective.

PRrROPOSITION 1. If R has a.c.c. on intersections of prime ideals
then every finitely generated flat R-module is projective.

Proof. In [8] these rings are characterized as those for which
(AQ R) is R-projective for every finitely generated A,. The conclu-
sion follows from Theorem 2.

Suppose A is locally finitely generated. For each prime ideal P
let »,(P) denote the number of generators required for A, over R,.
By Nakayama’s lemma, r«(P) = d,(P), the dimension of (A®R), as
a vector space over R3. Since the map P — P is continuous, it fol-
lows that if », is continuous on Spec (R) then d, is continuous on
Spec (1%). Using these observations we can give easy proofs of the
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following two theorems:

THEOREM 3 (Bourbaki [1, Th. 1]): Assume A, is finitely generated
and flat, and that r, is continuous. Then A, is projective.

THEOREM 4 (Vasconcelos [7, Prop. 1.4]): Assume A, is projective
and locally finitely gemerated, and that r, is continuous. Then Ay 1s
Sfinitely generated.

Proof of Theorem 3. By Theorem 3 we may assume R is regular.
A proof of Theorem 3 in this case may be found in [5], but we in-
clude one here for completeness. For each k& = 0 let

U, = {PecSpec (B)|r,(P) = k} .

By hypothesis the sets U, are clopen, and we let ¢, be the idempotent
with support U,. Then A= Ae P ---PAe, and r,, is constant
on Spec (Re,). Therefore we may assume #, is constant on Spec (R),
say r(P) = n for all P. Given a prime P, choose q,, ++-, a,¢ R such
that a,(P), ---, a,(P) span A,. Then a,(@), ---, a,(Q) span R, for all
@ in some neighborhood of P. (Here we need A, finitely generated.)
In this way we get a partition of Speec (R) into disjoint clopen sets
V., ++-, V, together with elements a,; ¢ R such that a;;(P), ---, a,;(P)
span A, for each Pe V;. Let e; be the idempotent with support V3,
and set b, = Y,e;a;;. Then, if P, is free on u,, -+, u,, the map P— A4
taking wu,; to b; is an isomorphism locally, and therefore globally.

Proof of Theorem 4. By Theorem 1 and the proof of Theorem 3
we can assume R is regular and »,(P) = n for all P. Write A =
P S Re;, et = e, #0, by [4]. Given PeS8pec (R), since (Re;)r is 0
if e,;e P and R, if e¢;¢ P, we see that there are precisely n indices <
for which e¢;¢ P. For each n-element subset J < I let

U(J) = {PeSpec (B)|e;¢ P for each jeJ}.

These open sets cover Spec (R), so Spec (R) = U(J)U --- U U(J,). If
jed U --- U, then e; is in every prime ideal, contradicting e; += 0.
Therefore | I| < mn, and A, is finitely generated.

As a final application we give the following:

PRrROPOSITION 2. Let 0 - A— B —C—0 be an exact sequence of
Sflat R-modules Assume Ay is finitely generated and (BQ R); is pro-
gective. Then A, is projective.

Proof. Since C,is flat, 0 ~ AQR—>BRXR—-CRXR—0 is
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exact. Since R is semihereditary (A ® R) is R-projective. By
Theorem 2, A, is projective.

If B is projective this proposition contains no new information.
(In fact, a trivial extension of Chase’s Theorem shows that the
sequence splits.) On the other hand, if we let M, be projective,
take fe R, and let B = M; = {{m/f"]}, then B; is not in general
projective; but by the second corollary to Theorem 5 (next section),
B®IA3 is R-projective.

4. Epimorphisms. Suppose M is a multiplicative subset of R,
and let S = M—R. Since S®Q Rp = S,/PS, for each prime P, we see
that S®1§P is l%p if PNM=g, and 0 if PN M= @. If we could
show that (S® R); is finitely generated, it would follow eas11y that
S® R = R/K, where K is the intersection of those primes P for
which PN M = @. We give an indirect proof of this fact in a more
general setting.

Suppose R and S are commutative rings and that a: R— S is an
epimorphism in the category of rings. By a theorem of Silver [6]
this is equivalent to the natural map S® S-S being an isomor-
phism. It is known [8] that R— R is an epimorphism, and it fol-
lows readily that the natural maps f: S— S ®]§ and g: BE— S ®IAB
are epimorphisms.

THEOREM 5. Let R and S be commutative rings and let o R— S
be an epimorphism in the categmﬂy of rings. Then there 1s a unique
ring homomorphism B: S —»S@R making the following diagram
commute:

/'8
v
R lﬁ
IN L

S® R

Moreover, 8 is an tsomorphism, and & and g are surjections with
kernel K = N{P|Sp # PS;}.

Paﬂoof.A We first show that S® R is regular. Suppose A and B
are (S® R)-modules. Then by Silver’s Theorem B = S ®:B, and by
[2, p.165] we have

AR sepB = AR s22(8SQ zB) = (AR s8) ® 2exB = A® 2B .

It follows that tensor products over S & R are exact, and therefore
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S® B is regular. Hence there is a unique map 8: S— S® R such
that gps = f, where @, S— S is the natural map. Consider the
diagram:

R — S
/
N
/
or S® R o5
/! AN
0/ N\s
/ ANAN
\ / NN\ %
R— S .

>

Here v is defined by the equations vf = @, vg = &. Now YBps =
vf = @5 and BYf = BPs = f. Since ¢, and f are both epimorphisms,
we see that v = ™. Also, B& = Byg = g, as required. Uniqueness
of 3 follows from the fact that & is an epimorphism (since both «
and @ are).

Next, we show & is onto. To simplify notation, we assume R is
regular and a: R— S is an epimorphism. Then S® S-S is an
isomorphism. But then S, ® z, Sr— Sy is an isomorphism for each
PeSpec(R). If seS, then 1®s—s®leker p,=0. It follows
that the dimension of S, as a vector space over R, is either 0 or 1.
Therefore a, is surjective for each P, (a(l) = 1), and we conclude
that a is surjective.

Finally, we compute ker g = K. If Pe Spec (), then

KSPe—Kp=0=—8p+0— SQR; #0 — S,/PS, #0.

COROLLARY 1. Let M be a multipl'écative subset of R and let
S=M"R. Then S@RA’L'S a cyclic R-module, and S®ﬁ s R-
projective if and only iof {P| M N P+« @} is closed in Spec (R).

Proof. Let K be as in Theorem 5. Then S® B = R/K is R-
projective if and only if K is a principal ideal, that is, if and only
if the set of primes containing K is open in Spec (R). But

P2oK—PS,#S;,—MNP= Q.

The next corollary shows that Theorem 2 is false if A, is not
assumed to be finitely generated.

COROLLARY 2. For each feR, R, ® R is R-projective.
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Proof. Set M= {f":n=0},. Then PN M+ @ if and only if
Qz( fleP. Thus K is the principal ideal of B generated by ®(f), and
R/K is R-projective.
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