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PERMUTATIONS AS PRODUCTS
OF CONJUGATE INFINITE CYCLES

EDWARD A. BERTRAM

Let S = {a;}”,, be a countable set and P any permutation
of S with infinite support. Since the subgroup generated by
the conjugacy class .2 of P must be normal in Sym (S), we
know that every permutation of S is a product of permu-
tations from .57 Since it has recently been discovered that
every even permutation in the finite symmetric group Sym (n)
may be expressed as a product of exactly two n-cycles, we
are naturally led to a similar question for Sym (S) and the in-
finite cycle C=(---, @5, @, Gy, Gy, Az, ---), with support all
of S. In this paper it is proved that for each % = 3 every
permutation of S is a product of exactly % cycles conjugate
to C, but that no odd finite permutation is a product of two.

1. Introduction and notation. In 1951 Oystein Ore [4] proved
that if S is any infinite set, then every permutation P of § is a
commutator, P = Q(RQ*R™), of permutations @, B. Throughout his
constructions, the conjugacy class to which @ belongs depends upon P.
Allan Gray, in his dissertation [2], showed that this dependency of
the class of @ upon that of P may be dropped. Our interest here is
in the group Sym (S) of all permutations of a countable set S. Gray
showed that if .27 is the conjugacy class of permutations whose
disjoint cycle decomposition consists of an ¢nfinite number of infinite
(and no other) cycles, then Sym (S) = .27297] that is every permutation
is a product of exactly two such conjugate permutations.

Recently, in [1], we studied the finite symmetric group Sym (n),
and solved the problem of characterizing those integers ! < n for
which every even permutation of » symbols may be represented as a
product of two (not necessarily disjoint) l-cycles. In particular, we
showed that every even permutation can be expressed as a product
of two m-cycles. (See also A. M. Gleason in [3, p. 172].)

In this paper we make use of the last result in considering a
similar question for the group Sym (S), S countable: Let <. denote
the conjugacy class of infinite cyecles, each of which moves each
symbol of S. Is there an integer m such that every permutation in
Sym (S) can be represented as a product of m permutations, each
from #.? If so, what is the smallest such m? We are able to
show that Sym (S) = &.F for k¥ = 3, but that Sym (S) # €..%.. To
accomplish this, we prove that every infinite cycle C may be repre-
sented as a product of two infinite cycles, where each cycle of the
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product moves those and only those symbols moved by C. Our con-
struction is thus simpler than Ore’s, who first showed that C is a
commutator by constructing C as a product of two permutations, each
the (disjoint) product of an infinite number of infinite cycles.

Let Alt (S) denote the subgroup of finite even permutations; <#
denotes the subset of permutations with one infinite cycle, and no
restrictions on finite cycles; & denotes the subset of permutations with
infinitely many 2-cycles and no infinite cycles or cycles of length = 4.
Then Alt(S)U <Z U & is shown to be a subset of &2 The re-
mainder of the proof consists in showing that if P¢ At (S)U 2 U &
then either PQe Alt (S)U &Z U & for some Q¢ &.. or PQe &. for
some Qe At (S) U &% U &.

The subset of symbols of S which are moved by PeSym(S) is
denoted by M(P). | M(P)| denotes the cardinality of M(P), (P), denotes
the cardinality of the set of cycles of length n(= 1) in the disjoint
cycle decomposition of P, and (P).. denotes the cardinality of the set
of infinite cycles in this decomposition. All products of permutations
are executed from right to left. P™ refers to the mth iterate of P,
for m > 0, and the —mth iterate of P~ (the inverse of P), for m < 0.

2. Permutations with M(P) finite. In this section we prove
that Alt (S) & &%, but that no finite odd permutation of S belongs
to &2 \denotes set theoretic difference.

THEOREM 2.1. Alt (S) & &2

Proof. Given Pec Alt(S), put | M(P)| = (< ). By Theorem 2
of [1], we know that the restriction of P to M(P) may be represented
as a product RS of two l-cycles R and S, each moving precisely the
symbols moved by P. If we fix ae M(P) and put S\M(P) = {b}},
we may list the symbols of S in the manner displayed below:

] bﬁ: bsy bn a, S(a)! SZ(C(/): Tty Slﬁ2(a')’ S—l(a)) bzy bu bs) M

Define two new permutations, S* and R*, as follows:

S*(bunsr) = o R*(byn_) = bomss m=1
S*b) = a R*(a) = b,
S*(by) = Damss R*(bsnrs) = b m =1
S*(S~'(@)) = b, R*(b,) = R(a)

S*(S*@)) = S¥'(@)  R*(S*'(a)) = R(S*"'()) O0=<k=1-—2.

It is now a straightforward verification that R*, S* ¢ ¥.. and R*S* =
P on all of S.
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If we let <7 denote the set of all PeSym (S) with | M(P)| <
and P an odd permutation of M(P), we have the following result [5].

THEOREM 2.2. < & Sym (S)\&.2

Proof. By contradiction. Assume that there exists Pec < and
Q, Re .. such that P = QR. Since R is an infinite cycle which
moves each symbol of S, we may rename the symbols of S with
{:}=», where R(x;) = x;.,. Then there exists symbols, say a and ¢,
such that a is the x;e M(P) of smallest subscript, and ¢ is that of
largest subscript. Since each symbol outside the “segment” [a, c] is
fixed by P, we know that Q*(a) = R~*(a) and Q*(R(c)) = R*(R(c)), for
k= 1. Thus the list of symbols of S can in fact be given by

ey, Qs(a)s Qz(a)r Q(CL), a, R(a)r Rz(a)r tt Y R_l(c)r ¢, R(C), RZ(C)’ Tt .

Note that Q(R(c)) must be among the symbols of the segment [R(a),
R7'(¢)], and that some symbols of the segment [R(a), B'(c)] may be fixed
by P. Permutations @* and R* are next defined as follows:

Q*(x) = Q) for z¢c[R(a), R(c)]; R*(x) = R(z) for x ¢ [a, c]
Q*(a) = R(c); R*(R(c)) = a
Q*(x) = x for x¢ [a, R(c)]; R*(x) = x for z¢ [a, R(c)] .

‘Then Q*R* = QR = P everywhere on S. But, restricted to the set
[a, R(0)], @* and R* are each cycles of length | M(P)|+ 1, and on
this set Q*R* represents the restriction of P to the set [a, R(c¢)].
‘This is a contradiction to the assumption that P is an odd permu-
tation on the set [a, R(c)].

3. Permutations with (P)., = 1. We first prove that .= &<
i< ++-. This, together with Theorem 2.1, yields Alt (S) € &2 <
&2 +++. Our construction also shows that every infinite cycle C
is a product of two permutations, each permutation in the conjugacy
class of C. The result is simpler than that of Ore [4, p. 309, Theo-
rem 2], who showed that C may be written as a product of two
permutations, each an infinite (disjoint) product of infinite cycles.

Here we regard S as the set Z of integers {..., —3, —2, —1,0,
1,2,.--}. Let C denote the permutation of Z given by C(G) =17+ 1
for each 1¢ Z. Then &, is the conjugacy class of C.

THEOREM 3.1. T.S ELCS E<S ---.

Proof. We need only show that Ce&: For this, let A =
‘("'r _9)97 ”‘6y61 _373: Oy "—ly 2y 13 "—2, ~4y4y _5751 _7y7’ _85 87 ** ')
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and B=(---,8, -9, 7, —8,5, —-6,4, —5, —2,0,2, -3,1, —, 1, 3,
—4,6, —-17,9, —10, --+) be given by

An) = —n,n = —3 Bn) = —(n +1),n=38
and for n = 3: and for n £ —3(n = —5):

An) = —(n — 3),n = 0 (mod 3) Bn) = —(n + 2),n = 0 (mod 3)
An) = —(n +1),n =1 (mod 3) Bn) = —(n + 3),n = 1 (mod 3)
An) = —(n + 2), n =2 (mod 3) Bn) = —(n + 2),n =2 (mod 3) .

Obviously, Ae#.. For n¢{-5,—-2,—-1,0,1,2}, by dividing the
proof according to the residue class of » (mod3), it is quickly veri-
fied that AB(n) = C(n) = n + 1; and this is immediate for ne{-5,
—2,-1,0,1,2}. B is a permutation, and it follows that Be % .,
since for each n e Z there exists an integer k(n) such that B*(n) = 0.

THEOREM 3.2. & & Z..

Proof. By Theorem 3.1, we may assume that Pec <# satisfies
Sinzi (P), > 0. Initially, we suppose that (P), = #>0and 3,,..(P), =
y >0, and if P does not satisfy one (or both) of these it will be
apparent what modifications must be made. Denote the set of 1-
cycles of P by {(f;)|1 =< j}, and the set of cycles of length = 2 by
{(@; 0; 5055 + =+ @;1) |1 < 4}. Either set may be infinite, of course.
For each set {a;;}}%, we introduce a new set {b; ;}},"* and let S be the
set of symbols

- ZU g @15 Wiy Qigy ==y Ay} U LZJI {f3
U Q {bi,lr b-;,zy R bi,l(i)—1}

where the infinite cycle of P is now to be given by

(' * _27 ——11 07 1! 2) 3y b1,1y b1;2! tt b1,1(1)-—15 43 5y 6y bz 19
bz,zy M) bz,l(z)—u .. ‘) .

In general, the sequence b;,, b;s +++, b; ;- is placed between the
integers 3¢ and 37+ 1, 1 < 7.

Modify the infinite cycle A of the preceding theorem by placing
f: between —3¢ and 3¢, and by placing the alternating sequence
@iy Divty Wigy B2y o+ oy Disiy—rs @iy between — (37 4 1) and 37 + 1.

A == (’ %y 9y _‘67f21 6y _‘3yfu 3: 03 Tty —4y Qy,1y b1,1; Aoy **°y b1,l(1)—1!
a’l,l(l)) 4, _'5y 5! _7r az,u b2,1y ctty az,z(z)y 7y _87 8y _117 .. ') .

Furthermore, let
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B = (" *y "“81 5!fzy —69 Tty 2’f1y _'3, * 0y 37 Q.19 b1,1’ Q29 *
bL,l(l)—u Ay, —4,6, Qg1 bz,u *e ey Aoz —-7,9, - ') ’

which is now an obvious modification of the B in the preceding
theorem. We see that A, Be &.; and P = AB needs only a straight-
forward verification.

COROLLARY 3.2.1. AU(S)U F U D S CLiS Ch S vee.

Proof. By Theorems 2.1, 3.1and 3.2, Alt (S)U ZFc&licEics.--.
To prove that & © &2, again let S = Z, and suppose Pec &. Then
there exists a Qe Alt (S) such that P = Q-0 1). By Theorem 2.1,
Q=AB, A, Be%.. Hence P= ABo(0 1). If either B*(0) =1 or
B*(1) =0,k =1, then Bo(0 1) consists of exactly one infinite cycle
and one (disjoint) k-cycle. By Theorem 3.2, since Bo(0 1) belongs to
F, Bo(0 1) e 2. But then Pe &:.

4, Permutations with infinitely many finite, and no infinite
cycles. Let & = {P|(P), = o, (P)yzs =0} and & = {P|(P)w =0,
Sinzi (P), = oo}, In Theorem 4.1 we prove that & & &2, Of course
& = &, s0 & & &2 but in order to conclude that Sym (S) & &2,
we will need the fact that & < <2, and this is shown in Theorem
4.2,

THEOREM 4.1. & < &2

Proof. Let Pe. be expressed as P = T15_o (Di:Di2 " * Diis)s
where S is now the collection {p;,}. Define the permutation @ by
Qi) = Pisryy — o <1< oo, and Q@) =z for x ¢ {p;,}=.. Then Q =
(v o+y Doy Drt> Doi» Prs Doy +++) 18 in 7, and thus Qe 2. But QP =
(o 0y Doty Porzs "= *s Poizys Doty Dozs = Dorys **+) 18 In &7, and hence
Pe &2

THEOREM 4.2. & & &L

Proof. Let Pe . S is here considered as a sequence of blocks
of symbols. On each block, mappings R, S are defined, and when
these restrictions are pieced together it will be seen that P = RS and
R, S are permutations in &... Let (b,0)(b:b) and (by1,0.15)(bersbiiry),
4 =1, denote the infinitely many pairs of transpositions in the dis-
joint cyele decomposition of P. We begin by defining R, S as follows:
S(b,) = by, S(bs) = by, S(b;) = b,, S(b)) = by, S(by) = by; (b)) = b, B(b,) = b,
R(b) = b, R(b,) = b;, R(b) = b,. The most complicated case is when
there are l-cycles and 3-cycles in P; for each 4 =1 for which there
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is a l-cycle (f;) and a 3-cycle (¢y_sc5i_.cs;), the tth block of S is given
by buit1y Buives Fis buivas Dugivnys Caiay Coimiy €55 With the exception of the
first few b; noted above, we define R and S on such a block as in
Figure 1, where parentheses have been inserted to single out the
cycles of P.

R
° ° o ° ° °
(bai+1  basa) (fi) (bai+s  bagen) (c3zi2 3 cs )
S
FIGURE 1.

All directed edges above the symbols refer to the mapping R (e.g.,
R(b,;.,) = b,;y5), whereas those below the symbols refer to S (e.g.,
S(byi+y) = bir). If either or both of (P),, (P), is finite, there will
eventually be blocks of symbols either without a 1-cycle, or 3-cycle,
or both. In such cases, we simply delete the appropriate incoming
and outgoing directed edges, and redefine R, S in the obvious way.

We may now patch the restrictions together in the various cases.
The second choice is given for S and R in case there is either no ith
1-cycle, or no ith 3-cycle, or both.

S(b4(i+1)+1) = fir b4i+2 R(b4<¢+2)) - fiv b4(i+1)+2
S(biis) = Ciay bygirirs R(byir1+8) = Csir buginny
S(Csi-1) = buiriy+s R(f5) = byine «

In each case RS = P on all of S, and R, Se ... Thus Pec &2

5. Permutations with more than one infinite cycle. Let &
denote the set of permutations P of S which satisfy 1 < (P). < oo.
Then Sym(S) = At (S)U 2 U .ZU & U.%, and we have shown
that the first four sets in this union are subsets of &2. We prove
that & < &3, in two parts, and will thus have proved that
Sym (S) = &%, for k = 8.
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THEOREM 5.1. {PeSym(S)|1 < (P). < oo} & &

Proof. We divide the argument according to whether (P).. is
odd or even, including more detail for the even case, since for (P).
odd the construction is very similar. Note that P may have cycles
of finite length. Let S = {a;;} U {b,,.}, where the infinite cycles of P
are denoted by (+++,a_,;, @5 ++), 1=<j<m=(P). and the
finite cycles by (b,,0,,2 *** b,,1(n)s2:- For purposes of the construction,
the {a;,;} are realized as the (integral) lattice points {(¢, 7)} in the
horizontal strip of the plane given by — o <1< o, 15 m;
each {b,,})") may be realized as any collection of l(r) points on some
rth horizontal line below the horizontal axis.

Let m(= (P).) be even, and define the mapping @ on S as follows
(see Figure 2a, where m = 6):

Q) = G if =7 (mod 2) and 7 <m
©? @iyjy if ©# 7 (mod 2) and 1 < j

Q@im) = Airr,m if =0 (mod 2)

Q(a,,,) = b,, and Q(b,,) = @y, if I(r) =1.

If I(r) > 1, put Q@z,) = b1y Q(,,5) = b,,5-, @ <3 = U()), Qb2 =
s,y R@Qsr) = b,y and Q(D,,,) = @s,_,,. If there is no rth |(finite)

(bribra . . .bri)

FIGURE 2a. m = 0 (mod 2)



282 EDWARD A. BERTRAM

cycle of P, put Q@) = G_s_y,.-

In all cases, @ is a permutation in %.. Furthermore, whenever
the rth finite cycle of P is a 1l-cycle, PQ contains the 3-cycle
(@2,,:0,,a_,.,). For each finite cycle of length I(r) = 2, PQ contains
Ii(ry — 2 1-cycles (e.g., PQ fixes b,;,2 <7 <I(r)) and two 2-cycles
(e.g., ((y,0..) and (a_..b,.). In any case, PQ contains the 2-cycles
(@;,;0; ;) for =7 (mod 2) and 1 < j < m, and the 2-cycles (@; n@—i12,m)
for i =0 (mod 2). Thus, no matter how many or how large the
finite cycles of P, PQe &. Since & & &2 and Qe &, Pec &2,

If (P). =m=1 (mod 2), we may assume (by Theorems 3.1 and
3.2) that m = 3, and realize the infinite cycles of P as moving the
appropriate lattice points, as in the even case. Define Q@ on these
lattice points as follows (see Figure 2b, where m = 5):

Q.. G0 if =7 (mod 2) and 7 < m
Q;,5) = ip - . .
@iy if 15 7 (mod 2) and 1 < j
Qsm) = Ag_sm if =1 (mod 2) .

If there is no rth finite cycle of P, define Q(as.) = A spy. @ i8S
defined on the elements {b,, b, *++, b,,,} of the rth finite cycle, on
@z, a0d @_y,,,, just as in the even case, where a_,,_,,, now plays
the role that a_,., did there. Again Qe %.., PQ contains at most
1-cycles, 2-cycles, and 3-cyeles, PQec &2, and Pe &2

P: aj,j —— i+,

FIGURE 2b. m =1 (mod 2)
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THEOREM 5.2. {P|(P). = =} & &2

Proof. Again let S = {a;;} U {b,.}, with the a;; realized as the
lattice points (¢,7) in the upper half plane, 1 £ j < o0, —00 <1< oo,
The infinite cycles of P are («++,a_y,;, G, ;j &, +++) for even j and
(soey @5y Qo js Ay, jy +++) if 7 is odd (see Figure 3). Incase 1< >,z (P
the b, , represent the symbols of the finite cycles of P:{(b,,.b,,:+ - b,,1(m)}rz1s
and are realized as in the previous theorem.

If (P),», =0, define the mapping @ as in Figure 3; it is a
straightforward verification that @ ¢ .. and PQ contains the 3-cycle
(@_1,00,0,5), and otherwise only 2-cycles. Thus PQe & < %2, and
Pe k. Otherwise, 1 < >, (P),, and we redefine @ in nearly the
same way as in the previous theorem, noting again that @ remains
in &.: For I(r) = 1, put Q(a.,,.) = b,, and Q(b,,) = a_,,,. For I(r) >
1, put Qs = bumr @B,.) = b, smy for 2 <5 < U1, @Bro) = acsy,
Q@_s_,) = b., and Q(b,,) = as,4,,. For each occurrence of a 1-cycle
of P, say (b,,), PQ contains the 3-cycle (a.,.b..@__.,). For each
finite cycle of length [ > 2, PQ contains [ — 2 1-cycles and one
2-cycle. Again PQ contains at most l-cycles, 2-cycles, and 3-cycles,
PQeZ2 and Pe &..

FIGURE 3
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