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The ^-dimensional affine group over GF{2) is triply transi-
tive on 2n symbols. For n ^ 4, 4 ^ k ^ 2n~\ any orbit of
^-subsets is a 3-(2π, k, λ) design. In this paper a sufficient
condition that such a design be a 4-design is given. It is
also shown that such a 4-design must always be a 5-design.
A 5-design on 256 varieties with block size 24 is constructed
in this fashion.

We shall call (Ω, 2&) a t-(v, k, λ) design whenever \Ω\ = v, & is
a family of ^-subsets of Ω and every ^-subset of Ω is contained in
exactly λ members of £2f. The design is nontrivial provided 3P is a
proper subfamily of Σk9 the family of all ^-subsets of Ω. If G is
a nontrivial ί-ply transitive group acting on Ω, then an orbit of k-
subsets under G yields a ^-design. The design is nontrivial if G is
not ^-homogeneous (transitive on unordered ^-subsets). The first
known 5-designs arose from orbits under the quintuply transitive
Mathieu groups M12 and Mu. Other 5-designs on 12, 24, 36, 48 and
60 varieties have been discovered (see [2; 3; 4]). In [1] a 5-design
on 2n + 2 varieties is constructed for every n ^ 4. Here we shall
discuss 5-designs on 2n varieties, giving one example for n = 8.

Let Ω be an ^-dimensional vector space over GF(2), n ^ 4 Let
L be the linear group GL(n, 2) acting doubly transitively on Ω — {0}
and T the group of translations ta: ω -+ ω + a. The group A = <X, Γ>
is the triply transitive affine group on Ω. Let Σ4, Σδ denote the
families of 4-, 5-subsets of Ω respectively. (Ω, S^o) is a 3-(2% 4, 1)
design where S% is the family of quadruples {ωj satisfying

<̂ i + o)2 + ω3 + ω4 = 0 .

^f is the orbit of affine planes in Ω. SΊ is also an orbit, where
6^x = Σ4 — <9Z Thus, A decomposes Σ± into only two orbits. From
the design parameters of (Ω, S^) one establishes that

- 1(2r

Suppose Q e S%. The stabilizer of Q in A is transitive on Ω — Q.
Thus, ^o is an orbit under A, where ^ consists of those members
of Σδ which contain a member of Si. Now suppose R e Σ5 —
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Clearly there exists a translate of R of the form

R* = {0, ω19 ω2, ωs, ω4} .

Since Ro contains no member of £%, the ω^s must be linearly inde-
pendent in Ω considered as a vector space. Since L is transitive on
linearly independent quadruples in Ω — {0}, it follows that A must be
transitive on the family ^ i , where ^[ = Σδ — ̂ . Therefore, A
also decomposes Σ5 into only two orbits. From our knowledge of

we can deduce that

= ( 2 - - 4 )

Geometrically ^l consists of the 5-subsets which generate 3-dimen-
sional affine subspaces of Ω, while the members of ^ 7 generate 4-
dimensional subspaces. This classification of orbits in Σ4 and Σδ will
provide the information needed to investigate 4- and 5-designs which
arise from orbits under A*

Suppose Δ is a ^-subset of Ω and let £gr denote the orbit of Δ
under A. Let σί5 r4 denote the number of members of <_£?, ^l con-
tained in Δ respectively, i = 0,1. Let Xi9 μt denote the number of
members of 2f containing a fixed member of <pf, ^ respectively,
i = 0,1. If λ0 = X1 (μ0 = ^ ) , then (Ω, Si) is a 4-design (5-design).
The following equations relating the σi9 τif \i9 μi are the result of
straightforward counting arguments:

(1)

(2)

( 3) τ0 = σo(k - 4) .

From (1) and the fact that

l^l/l^fl = 1/(2*-4)

we see that (Ω, £&) is a 4-design if and olyn if

(4) σ, = <70(2 - 4) .

Likewise from (2) and the fact that

I^I/I^TI =5/(2--8)

we see that (β, £?) is a 5-design if and only if

(5) τx = ro(2» - 8)/5 .
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Since σι = ( 4 J — σ0 and rx = ί g j — τ0, we can use (3) to express

σlf r0, r t in terms of σ0 and k. Substituting accordingly for σx, r0,
Ti in (4) and (5) we obtain

(4') (J

( * ) σo(Λ - 4) = σo(k - 4)(2- - 8)/5 .

After simplifying the preceding equations we see that both (4') and
(5') are equivalent to

( 6 ) *o

We have in effect proved the following

THEOREM. (42, 3f) is a 5-design whenever (Ω, 3f) is a 4-design.
A necessary and sufficient condition for this to take place is that

The first thing to note is that 2n — 3 must divide ( , j for such

a 5-design to exist. This is not possible for 6 ^ k ^ 2W~X if 2n — 3 is
a prime power. Therefore, the first feasible value of n is eight. For

n = 8, the values of k ^ 27 for which 2n - 3 divides ( * ) are 23, 24,

25, 46, 47 and 69. We pursue the case n = 8, & = 24.
Our theorem tells us that for | Δ \ — 24, (Ω, 3ί) is a 5-design

provided σ0 = 42, We must select a 24-subset J which contains ex-
actly 42 members of S%. One example of such a A is the following.
Let (uίf u2, u3, vlf v2, v3, w19 w2) be a basis for the vector space Ω. We
define 3-dimensional vector subspaces of Ω:

Uo = (uu u2, uz)

Now let Δ = f7 U F U TΓ, where

i7 = Uo + Wi

F - Fo + ^ 2

For this Δ it is clear that σ0 ^ 42 since each of the 3-dimensional
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affine subspaces U, V, W contains 14 members of <5f. Suppose A contains
additional members of g%. There exists Q e Si such that Q meets at
least two members of {U, V, W). In order to decrease the number of
cases to be considered we investigate the action of the stabilizer of
A on {U, V, W}. Let x, ye L be defined by

[Ui —> v* —> lUi + v4) —>Ui, 1 ^ i ^ 3
x:

[w1 —> wz —> (w1 + w2) —+ Wi

Letting α?*, y* denote the action of x, y on {U, V, W}, we have

Hence, <(αj*, y*y acts as the symmetric group S3 on {U, V, W). We
must only consider the cases where the partition of Q induced by
(U, V, W) is of the form (2,2,0), (3,1,0) or (2,1,1). These three cases
are easily seen to be impossible, so no such Q exists. It follows that
σ0 — 42, and we have a 5-design on 256 varieties with blocks of size
24.

One wonders in how many affine spaces Ω such 5-designs exist.
Since 143 divides 2n — 3 whenever n = 28 (mod 60), there are infinitely
many values of n for which 2n — 3 is not a prime power. For fixed
k, n, with 6 ^ k ^ 2n~1, let us consider the problem heuristically.
Suppose we select A from Σk randomly, each member of Σk having

probability l/( h ) of being selected. Now σ0 is a random variable
/

on the probability space Σk. The expectation of σQ is

oA 5-design of the type under consideration exists if and only if σ{

achieves its expectation in Σk. When E is an integer, it does not
seem unreasonable that σ0 would achieve its expectation.

The author has not investigated the construction of designs in
affine spaces over GF(2) by using more than one orbit under A.
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