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A bound is given for the order of the Amitsur cohomology
group Hi(S/R, U) corresponding to an extension R<S of rings
of algebraic integers. The effect of inflation on the Chase-
Rosenberg exact sequence involving Amitsur cohomology and
split Brauer groups is also studied.

It is well known [9] that global class field theory, together with
some results of Auslander-Goldman [2], leads to the determination of
the split Brauer group B(S/R) corresponding to an extension Rc S
of rings of algebraic integers. Although the Amitsur cohomology
group H*S/R, U) is related to B(S/R) by the Chase-Rosenberg exact
sequence [5], H*S/R, U) has only been computed in case R = Z and
S is quadratic (see [10] and [8]). In this note we prove H(S/R, U)
is finite for all 7 (Corollary 2.2) and, as in [8], derive further infor-
mation in case 7 =2 by applying inflation to the Chase-Rosenberg
sequence.

Throughout the paper, rings and algebras are commutative with
unit elements and algebra homomorphisms are unitary. We assume
familiarity with the Amitsur cohomology, Brauer group and Pic
functors (see [4], [2] and [3] respectively) and with spactral sequences.

2, Finiteness of chomology. The aim of this section is to es-
tablish a bound for the order of Amitsur cohomology groups in the
unit functor U for extensions of rings of algebraic integers.

ProposITION 2.1. Let R be a Dedekind domain with quotient
field K, S the tntegral closure of R in an nm-dimenstonal separable
field extension L of K, and T the integral closure of R in a normal
closure F of L/K. Assume U(T) can be generated by m elements.
Then, for all © =0, the Amitsur cohomology group H(S/R, U) is
finite, with order at most n™=1",

Proof. We first observe that the cochain group C*'(S/R, U) =
US @z ®zS) = U(S?) is finitely generated for all 7 =1. By a
standard argument [12, Chapter V, Theorem 7}, S and T are module-
finite faithful R-projectives such that S ®:K = L; hence the R-rank
of S is n. Let G = gal(F/K). Tlatness provides injective R-algebra
homomorphisms S¢-— T¢— F'%; composition with the canonical isomor-
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phism F'*— [l F(defined in [4, p.18]) yields an injection S*— J/IT

gi—1
and, hence, a monomorphism of abelian groups U(S*) — HU(T).
Since IIU(T) is finitely generated, so is U(S9).

H'(S/R, U), being a quotient of a submodule of U(S‘+), is
therefore finitely generated. However, H(S/R, U) is annihilated by
n, the R-rank of S [1, Theorem 6], and is therefore finite.

As |G| =[F: K] = n!, it follows that /U(T) can be generated

G’L

by m(n!)’ elements. By the elementary theory of abelian groups, the
same conclusion holds for Ci(S/R, U) and, hence, for its quotient
HYS/R, U). Since H‘(S/R, U) is n-torsion, the result is immediate.

COROLLARY 2.2. If RCS is an extension of rings of algebraic
integers then, for all ¢, H(S/R, U) is finite.

Proof. If T is as above, a weak form of Dirichlet’s unit theorem
implies U(T) is finitely generated, and the proposition applies.

3. Kernel of inflation. Let f: S— T be an R-algebra homo-
morphism and J an abelian group valued functor defined on a full
subcategory of R-algebras containing all the tensor products S™ and
T*. The homomorphisms J(f&® «++ X f): J(S*) — J(T") induce a
map of Amitsur complexes C(S/R,J)— C(T/R,J) which yields
inflation homomorphisms inf: H*(S/R, J) — H*(T/R, J).

In this section, we study the kernel of inf for the case n =2
and J = U, the unit functor. The principal result, Remark 3.3, comple-
ments the torsion result in [8, Theorem 2.7], and may be used with
Corollary 4.4 below to yield information about cohomology of rings
of algebraic integers.

We begin by recalling the following result.

ProposITION 3.1. (Chase-Rosenberg [5, Theorem 7.2]). Let R— S
and S — T be R-algebra homomorphisms, and let J be a functor from
R-algebras to abelian groups. For each q = 0, let J% be the functor
given by JL(A) = H(AQ,T/A,J). Then there exists a first quadrant
spectral sequence H*(S/R, J%) = H**(T/R, J).

The most important application of the proposition is to the case
of an R-based topology (Definition [7, p.86]) for which J is a sheaf
and {R— T} a cover. Then the natural transformation J-— J} is an
equivalence. In particular, the E?° term of the above spectral sequence
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is just H?(S/R, J).

COROLLARY 3.2. Let R— S and S— T be R-algebra homomor-
phisms such that T s faithfully Afat over R. Then there is an
evact sequence H'(S|R, Us) — H¥(S/R, U)™S HXTIR, U).

Proof. A standard spectral sequence argument, applied to the
proposition with J = U, provides an exact sequence

H'(S/R, Uj) — H*S/R, U3) %25 HYT/R, U) .

However, U is a sheaf in the faithfully flat R-based topology [5,
Proposition 3.9(a)], and so the preceding remark identifies U} with
U. Then [11, Lemma 1.1 and Proposition 1.6] identifies the edge
homomorphism with inf, to complete the proof.

REMARK 3.3. Let RC S T be a tower of rings such that 7 is
faithfully flat over R and T is a rank % S-projective (rank defined
in [3, p.141]). Then ker [inf: H¥S/R, U) — H*(T/R, U)] is n-torsion.

For the proof, it suffices to show U%(S) is n-torsion. However,
[5, Corollary 4.6] yields natural isomorphisms

ker [Pic(S) — Pie(S®:T] = H(S ®:T/S, U)
and
ker [Pic(S) — Pie(T)] = HY(T/S, U) .

Hence, U3(S) embeds in H'T/S, U) which is n~-torsion [1, Theorem
6], to complete the proof.

4., Direct limit arguments. We begin by recalling the Chase-
Rosenberg exact sequence of low degree obtained from the direct
limit of spectral sequences given by Proposition 3.1.

PropPosITION 4.1. (Chase-Rosenberg [5, Theorem 7.6]). Let S be
a module-finite faithful and projective R-algebra. Then there exists
an exact sequence natural in S:

0 — H'(S/R, U) —> Pic(R) — H°(S/R, Pic) — H*(S/R, U) —
B(S/R) — H'(S/R, Pic) — H*(S/R, U) .

The isomorphism of Amitsur cohomology with split Brauer group
in the case of fields is contained in the next result, a slight improve-
ment of [5, Corollary 7.7].

COROLLARY 4.2. If S s a module-finite faithful and projective
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R-algebra with Pic(S?) = 0, then the natural map H*(S/R, U)— B(S/R)
18 an isomorphism.

Proof. It suffices to prove Pie(S) = 0. Sinece composition of a
face map S--» S* with the contraction map S*— S is the identity on
S, applying the functor Pic shows that the identity map on Pic(S)
factors through Pie(S?% = 0.

REMARK 4.3. Let RC S be rings of algebraic integers whose quo-
tient fields form an #n-dimensional extension, and let 7 be the class
number of S. If (k, ») =1, then the canonical map H*(S/R, U)— B(S/R)
is a monomorphism.

Proof. Since S is Dedekind, Pic(S) is isomorphic to the ideal
class group of S[3, Exer. 21, p.181], and so H°(S/R, Pic) is h-
torsion. As noted in the proof of Proposition 2.1, S is a rank n R-
projective and H*(S/R, U) is n-torsion. An application of Proposition
4.1 completes the proof.

For the remainder of this section, let R be a ring of algebraic
integers with quotient field K, F' an algebraic closure of K, and A the
ring of all algebraic integers inside F.. We proceed to study direct
limits of groups of the form H™*(N/R, U), where N ranges over the
inclusion-directed collection of algebraic number overrings of R con-
tained in A. By cofinality, this may be viewed as taking direct
limits over the map-directed collection of module-finite R-faithfully
flat domains [7, Ch. III, Remark 3.1(b)]. Interest in such direct limits
is partially due to the Cech description of cohomological field dimen-
sions [7, Ch. I, Theorem 3.13].

In the finite R-based topology [7, p.105], the functor U is re-
presented by R[X, X~'] which is an algebra-finite commutative cocom-
mutative Hopf algebra over K. Consequently, [7, Ch. II, Remark
2.3(b)] shows that the canonical map lim H*(N/R, U) — H"(A/R, U)

is an isomorphism for all n = 0.

COROLLARY 4.4. Applying lim to the sequence of Proposition 4.1

yields an isomorphism H* (A/R,NU)—;—»Pic(R) and an exact seguence
0— H*(A/R, U) — B(R) — lim H'(N/R, Pic) — H*(A/R, U).

Proof. If P is a (not necessarily commutative) Azumaya R-algebra,
let L be a finite dimensional subextension of F/K such that the class
of P@:K ®xL = P@®:L is trivial in B(L). Let M be the integral
closure of R in L. Since B(M)— B(L) is a monomorphism [2,
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Theorem 7.2], it follows that the class of P @M is trivial in B(M).
Thus B(R) = lim B(N/R), and the above discussion shows that we

need only prove lim H'(N/R, Pic) = 0. This, in turn, follows from
the fact that lim Pic(N) = 0, which is an easy consequence of finite-

ness of class number (¢f. [6, Theorem 20.14]).
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