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In this paper, the concept of bounded slope variation, that
of the derivative of a function with respect to an increasing
function, and the Lane integral are used to obtain a generali-
zation of a theorem of Frέdέric Riesz.

In [3], R. E. Lane defined an integral which is an extension of
the Stieltjes mean sigma integral defined by H. L. Smith [5]. If each
of / and g is a real-valued function whose domain includes [α, b] and
D — {#*}?«<> is a subdivision of [α, δ], then SD(f, g) denotes the sum

ί|[/W + H

The concepts of singular graph, exceptional number and summability
set are as in [3] If each of / and g is a real-valued function whose
domain includes [α, b] and if there exists a summability set G for /

S b

fdg is the refinement limit
a

limit SD(f,g).
DdG

In case the entire interval [a, b] is a summability set for / and g in

S b

fdg is the Stieltjes mean sigma integral
fdg.

a

By Theorem 4.1 of [2], if / is quasicontinuous on [a, b] and g is

S b

fdg exists. (A function / is
a

said to be quasicontinuous at (c, f(c)) if both f(c +) and f(c —) exist.)
DEFINITION 1. The statement that / has bounded slope variation

with respect to m over [α, b) means that / is a function whose domain
includes [α, 6], m is a real-valued increasing function on [a, δ], and
there exists a nonnegative number B such that if {#*}?=,(, is a subdivi-
sion of [a, b] with n > 1, then

The least such number B is called the slope variation of / with respect
to m over [a, b] and is denoted by V*(df/dm). [Note: Vί(df/dm) = 0.]

The above sum is nondecreasing with respect to refinements.
In [4], F. Riesz proved that a necessary and sufficient condition

695



696 FRANK N. HUGGINS

that a function F defined on the interval [a, b] be the integral of a
function of bounded variation on [α, b] is that F have bounded slope
variation with respect to I over [α, 6], where I is the function defined,
for each x, by I(x) = x. In this paper, Riesz's result will be generalized
using the Lane integral instead of the Riemann integral.

By Lemma 3.3 of [6], if / has bounded slope variation with respect
to m over [a, b] and a ^ c < δ, then

D+f(c) = \imf{X) f{C)

— m(c)

exists and if a < c <k δ,

D~f(c) = lim
x-+c-m(x) — m(c)

exists.

LEMMA 1. If f has bounded slope variation with respect to m
over [a, δ], c is a number in [a, δ], and m is continuous on the right
(left) at (c, m(c)), then f is continuous on the right (left) at (c, f(c)).

Proof. Let ε denote a positive number and let c be a number
in [α, δ]. Suppose m is continuous on the right at (c, m(c)). Then
a S c <b and D+f(c) exists. Therefore there exists a positive number
δ1 such that if c < x < c + δlf then

/(a?) - /(c)
m(x) - m(c) < 1

from which it follows that

(s) - f(c) I < [| Di/(c) I + 1] I m(x) - m(c) \ .

Since m is continuous on the right at (c, m(c)), there exists a positive
number <52 such that if c<x<c + δ2, then | m(x) - m(c) 1 < ε/[| J9+/(c) | + 1].
Let δ = min. [δl9 δ2]. Then if c < x < c + δ,

I /(a?) - f(c) I < [| Dlf(c) I + 1] I m(») - m(c) |

= s .

Therefore / is continuous on the right at (c, f(c)).
If m is continuous on the left at (c, m(c)), a similar argument will

show that / is continuous on the left at (c, f(c)).

DEFINITION 2. Suppose m is an increasing function on [α, 6], / is
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a function whose domain includes [α, b] and c is a number in [a, 6].
The statement that / has a derivative with respect to m at the point
(c, f(c)) means that

m{x) — m(c)

exists.

THEOREM 1. / / / has bounded slope variation with respect to m
over [a, b], then Dmf(x) exists for each x in [α, b] — E, where E is a
countable set.

Proof. Since / has bounded slope variation with respect to m
over [a, b], D+f(x) exists for each x in [a, b) and D~f(x) exists for each
x in (α, 6]. Let E1 denote the set of all numbers x in [α, b] such that
Dmf{%) < D+fix) and let E2 denote the set of all number x in [α, 6]
such that D~f(x) > Dif(x). Let all rational numbers be arranged in
a sequence rl9 r2, r3, . Then if c is a number in Eι there is a smallest
positive integer k such that

D-f{c) <rk< Dif(c) .

There is a smallest positive integer h such that rh < c and

/(*) ~ f(c) <

m(x) — m{c) k

for rh < x < c and a smallest positive integer n such that rn> c and

r
k

m(flc) — m(c)

for c < x < rΛ. These two inequalities together give

(1) f(x) - f(e) > rk[m(x) - m{c)\

for rh < x < rn, x Φ c. Thus to every number c in Ex there corresponds
a unique triad (h, k, n) of positive integers. Suppose some two numbers
x1 and x2 of Eγ correspond to the same triad (h, k, n). Then, on putting
c — xι and x — x2 in (1), we have

/(^i) > rk[m(x2) - mix,)]

and, on putting c = x2 and # = xu

or
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f(xd - f(xd < rk[m(x2) - mix,)] .

This involves a contradiction. Therefore no two numbers of Ex cor-
respond to the same triad. Since the set of triads of positive integers
is countable, it follows that Et is countable. A similar argument will
show that E2 is countable. Therefore E = Eλ U E2 is countable.

THEOREM 2. // the function m is increasing on [α, δ], each of the
functions f and g is continuous on [a, b] and Dmf{x) = Dmg{x) for
each x in [a, b] — H, where H is a countable set, then f(x) = g(x) —
Q{Q) + f(a) for each x in [α, δ].

Proof. Let F be the function defined, for each x in [α, δ], by
F(x) = f(x) — g(x). Then F is continuous on [α, δ] and DmF(x) = 0
for each a? in [α, δ] — H. Let ε denote a positive number and let c be
a number in (α, δ]. Let fffl [α, c] = {pu p2, , pn, •}. Since F is
continuous on [α, δ], for each positive integer n there exists a positive
number δn such that if a? is in (pn — δn, pn + δn) Π [α, c], then

Let hn = (pΛ — δΛ, p Λ + 5n). I t follows t h a t if xγ and OJ2 are numbers

in hH Π [a, c], then

For each n, choose some particular hn satisfying the above conditions.
Now consider any number t in [a, c] — Hf) [a, c]. Then DmF{t) = O
If t is in (α, c), there is a positive number δt such that (t — δt, t •+ δt)
is a subset of (α, c) and if # is in (t — δt, t + δt) and x Φ t, then

Λx) ~ F(t)
m(x) — 12[m(c) -

or

ι{x) — m(t) I\m- 12[m(c) - m(α)] 12[m(c) - m(α)]

where F(ί) is the variation of m over [ί — δt, t + δj . If t = α, there
exists a positive number δα such that if x Φ a and x is in (a — δa, a + δβ) Π
[α, c], then

\F(x)-F(a)\< S ' F ( α )

12[m(c) - m(α)]

where V(a) is the variation of m over [α, α + δa]. If t = c, there exists
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a positive number δc such that if x Φ c and x is in (c — δc, c + δc) Π
[α, c], then

where V(c) is the variation of m over [c — δc, c]. It follows that if t
is in [α, c] — H Π [α, c] and α̂  and #2 are numbers in (t — δtf t + δt) Π
[α, c], then

Let gt — (t — δt, t + δt). For each t in [α, c] — HΓ\ [α, c], choose some
particular gt satisfying the above conditions. Let G denote the collec-
tion to which g belongs if and only if either (1) for some positive integer
n, g — hn or (2) for some t in [a, c] — Hf] [a, c], g = gt. G is a collec-
tion of open intervals covering [α, c], hence there exists a finite sub-
collection G' of G that covers [a, c]. Choose a finite chain {Rίy R2, , Rk]
of intervals of G' covering [a, c] and having the property that if Ei D
BSΦ 0 , then | i — j \ = 1. Let a = xQ9 x1 be a number in i2x n R2, %*
be a number in R2 Π -K3, , ^^-i be a number in i?A._1 Π Λ ,̂ and xk = c.
Note that if for every i ^ k, Ri is ^ for some £ in [a, c] — Hf] [a, c]
and Vi = V(t) for that ί, then

X F { < 3[m(c) — m(α)] .

Now

2f(c) - F(a) = Σ

Therefore

I F(e) - i^(α) I ̂  Σ

where the first sum is the sum of those terms for which Rι is some
hn and the second sum is the sum of those terms for which Ei is some
gt. Now Xi^ and xt are in Ri so that

\F(xι)-F{xi-ι)\<

(ε/2«+1 if Bi - K

e-Vjt)
6[m(c) — m(a)\

if Ri = gt
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Hence

oo

y n I JL1 \Xi) — JO \Xι^ι) I <^ S j OJ ώ — C/ ώ

and

ε 3[m(c) — m(α)] ε_
K 6[m(c) - m(α)j = ¥ *

Therefore | JP(C) - F(a) | < ε/2 + ε/2 = ε. Thus F(c) = F(α). But c
was any number in (α, 6]. Hence for each x in [α, δ], ^(a;) = F(a) or
/(α) = g(x) - </(α) + /(α).

THEOREM 3 /% orcter ί/̂ αί the function F defined on [a, b] be the
Lane integral of a function f of bounded variation on [a, b] with re-
spect to a continuous, increasing function m on [α, 6], it is necessary
and sufficient that F have bounded slope variation with respect to m
over [a, δ].

Proof. It is easy to see that the condition is necessary. Suppose
that F has bounded slope variation with respect to m over [a, b]
Then F is continuous on [α, 6]. Let / be the function defined, for
each x in [α, 6], by

ίf(x) = D+F(x) for each x in [a, b)

1/(6) - Ώϋ

Then / is of bounded variation on [a, b] and is therefore quasicon-
tinuons on [a, &]. Moreover, DmF(x) = f(x) for each x in [α, b] — E,
where E is a countable set. Let G be the function defined, for each

x in [a, b], by G(x) = \ fdm. Then G is continuous on [α, b] and
DmG(x) — f(x) at each number x in [α, &] such that / is continuous
at (x, f(x)). Since / is quasicontinuous on [α, 6], DmG(x) = /(a?) for
each α? in [α, 6] — iίΓ, where Z" is a countable set. Therefore DmF(x) =
DmG(x) for each a? in [α, δ] — £Γ, where H is a subset of E [j K. It

/dm + F(a) for each a? in [α, &].

That is, F is the Lane integral of a function / of bounded variation
on [α, δ] with respect to a continuous, increasing function m over [α, δ]

It should be noted that if m = 7, then the Lane integral reduces
to the Riemann integral so that Theorem 3 contains Riesz's theorem
as a special case.
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