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Some refinements of Wallis’s estimate for = noticed in
the recent literature are pointed out as already contained in
a certain continued fraction expansion due to Stieltjes. A
property of the approximants to this continued fraction is
established which yields a simple proof of the expansion and
furnishes, in particular, interesting monotone sequences of
rational numbers with limit z. Two estimates of the Wallis
type involving quotients of gamma functions are derived.
They include estimates for I'(¢) and = cse za (0 < a < 1) both
of which reduce for a = 1/2 to one of the known refinements
of the Wallis estimate.

0. Introduction. Let
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We have the well-known Wallis estimate
ngs <i < (n-l——l—)g“;, .
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Obtaining the case x = n + 1/2 of the inequalities
1 I:F(x + 1) ]2 x?
1 T — = 2 , 0
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by an application of a theorem in mathematical statistics, John
Gurland [3] notes that

AV, 1 _ (n+3)F ,
(n+ 4)gn<ﬂ<——————n+% & .

The first inequality here has been found earlier by D. K. Kazarinoff
[4]. On the basis of a result of G. N. Watson, A. V. Boyd [1] has
shown that one cannot have

(n+—-1—+1/(an+b)>gi<—l—, a>0,0>0
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for all n if a < 32 and asserts that
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for all » = 1 with b, = 32 and b, = 48. All these facts are, however,
overshadowed by the following continued fraction expansion due to
Stieltjes [5]:

I+ 1) ] _ 12 3
I {_____ =dy +1+ ,
(1) Tz + %) 2(4x +1) + 2(4x + 1) + ---
1

x> Z .

Indeed, this result, together with its obvious transformation

4[ 'z +1) ]2 _ (4 + 2y 1? 3
I'@ +3) 4r +83 + 204w +3) + 2(4x + 3) + -+’

x> ——é— ’

suffices to dispose of (1) and the two observations made in [1], the
second of which is seen to hold even with b, = 12 and b, = 27. We
wish to point out a simple and informative proof of (I) which shows,
in particular, that

4 12 4
4 Doz T =, 4 14+—= )z | =, -
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A direct proof of (1) is easy. In fact, assuming throughout that
0 < a <1, we prove the two generalizations

_l-a I'z + a) "~ 1
I g 2 <[ I'(2) SUramr—1’ #>0
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As special cases of interest, we have estimates for I'(@) and wesera
generalizing Gurland’s estimate for x:
1 n+ «

(n + a/2)*g,(a) < @) < (n+ 1+ a)/2)"

(1-E) < (14 L 6w,

g.(c) ,

where

a@=*Tr"h, e@=afi(1-%).
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One should compare (II), (III) and the inequalities

'z + a) =
I'(%)

which follow at once from the log-convexity of the gamma function.
Wallis’s estimate is the special case of (2) in which a =1/2 and
x =n + 1/2 — the two together actually yield 7/(1/2) = /7 . This is
a simple evaluation of I"(1/2) that goes back to Stieltjes [2]; it is simple
because (2) for & = 1/2 requires only Schwarz’s inequality for integrals.

The proofs of (I), (II) and (III) all utilize this familiar asymptotic
formula implied by (2):

(2) x~—1+a<[ <, £>0,

(3) I'(x + a) co 2°I'(2) , x>0,

1. The expansion (I). We have

p g 2k — 17 _ Auo)

Clw) =0+ =~ = =B

£(%) m+2x+2x+'" + 2% B.(z)
k=0,1,”'y

W, = Ay(x) and W, = B,(x) being the two solutions of the recursion
Wiw, = 2eW, + 2k + 1)*W,—,
defined by the initial values
A(x) = —x, A (x) =1; Bo(x) =1, B_(x) =0.
It is easily verified that the above recursion is equivalent to
Wi =2+ 200 W, + 2k + 1)*Wi_,,

where

Wi=(+ 2k + 2e)W, + @2k + 1)*W,_,, e= =*1.
This establishes the matrix identity

@+1PB@+2) A+27] [a+2k+2 @k+1p
[(x— 1) Bz — 2) Ay — 2)} - [w— ok — 2 (2K + 1)2] )
Ay(x) B, ()
) [Ak-l(m) B,_,(x) J

by an induction from the cases k¥ — 1 and %(= 0) to the case %k + 1.
Passing to determinants, we at once see that

sgn{(z — 1)*Cy(@ + 2) — (@ + 1)’ Ciu( — 2)} = (=1)*, x>2,

which, on replacing = by 4z + 3 and introducing
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Tele) = [%_i%] Cildz + 1), x> -1,
may be written
sgn{v,(@ + 1) — 7.(x)} = (=1)*.
By (8), this yields
*) Tu@ +n) T4,  Yuul@+n) |4, nleo .
Hence 7:,(%) < 4 < Yarri(2) and so we obtain (I):

lim v,(x) = 4.

k—oo

The existence of this limit is assured by a known theorem [5, p.239]
on the convergence of an infinite continued fraction with positive
elements.

2. The inequalities (II). Consider
_ B F(x) ]ua
1,9 = @~ 2| 7P|
>0, —c0o <Pp< + o0
We have

sgn{f(p, ¢ + 1) — f(p, )} = sgn{p — p(x)},

1 1—a
(1+a/x)1/“_1I 5 0<)a oo,

f(o(@), ©) = flp@), © + 1) > flp@ + 1), 2 + 1) .

The first of these assertions is easily checked and the last is obvious
from the first two. The second, restated in the more convenient form

- a _ a _ 1 l-«a
X(u)—p<ezuu__1>_ezau_l e2u_1I 2 4 ulo’

@) = v —

follows on observing that

1 ot
YU =— — —— <0,
() sh*u sh*au <

(shu)/u being increasing in (0, o), while

lim y(u) = lim a' —1) —(*-1) 1—-a .
u—0 h—0 ah'h 2

Hence, by (3), we have the following limit relations which contain
more than (II):
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(**) AQ - a2, e +n) 11, floe+n),z+n)]1, nle.

3. The inequalities (III). Proceeding as before, let
I*(x)
F'ec+al@x+1—a’
>0, —c0 < g < + 00,

9(g, ) = (x — q)

The readily verified facts
sgn{g(q, = + 1) — g(g, )} = sgnfg — ¢(@)} ,

- al-—-aox _ oo
do) = g tat—a), 0 el =,

9(q(@), ») = g9(q(®), ® + 1) > glg(x + 1), 2 + 1),
together with (3), prove more than (II):
(***) glad —a),c+n) 11, glg@+n),s+n)|l, nle.

An alternative proof is given by the product expansion

- @ l™() T al — a)
Ge) = Le+a)l(z+1—a nI=Io<1 * @+ )@+ n+ 1)> ’

which is evident from

G _,, al—a . _
o+ 1+"—_x(x+1) , lim G@) =1,

where the limit relation is a consequence of (3). The case # =1 of
the above expansion occurs in [6].
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