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Let K be a complete, non-archimedean, non-trivially valued
field. Let B be the category of all non-archimedean Banach
spaces over K satisfying the "condition (N)" with morphisms
continuous linear transformations /, | / | ^ 1. In this paper,
we first characterize all compact functors F: B-> B as functors
which take finite dimensional spaces to finite dimensional
spaces. We then show that in case K is maximally complete
the Mityagin-Shvarts imbedding theorem for duals of functors
holds true for functors in B. Finally, using the above results
we show that the dual of a compact functor is itself compact.

The present investigation originated in an attempt to apply the
Mityagin-Shvarts theory to functors in categories of non-archimedean
Banach spaces. In fact, the first and the last results mentioned above
are closely related to some problems proposed by Mityagin and Shvarts
for functors in categories of ordinary Banach spaces in [4]. Several
of these original problems have been solved by a student of mine,
Kenneth L. Pothoven, in his thesis [5].

2* Preliminaries* Let K be a complete, non-archimedean, non-
trivially valued (i.e., the value group is not trivial) field. We denote
by R the valuation ring of K (i.e., the set of all xeK such that
\x\ <; 1). A nonarchimedean Banach space over K is a complete
normed vector space over K such that the norm satisfies the ultrame-
tric inequality:

\x + y\^ sup(|α?|, \y\) for x,yeX.

In this paper we shall assume that all the non-archimedean Banach
spaces satisfy the following condition [6].

(N) For each xe X, \x\ belongs to the closure of the value group
of K.

For the pair (X, Y) of non-archimedean Banach spaces, let L(X9 Y)
denote the non-archimedean Banach spaces of all continuous linear
maps from Xto 7 with the norm | / | = sup{|/(#)|: xeX and |α?| <£ 1}
(See [6, p 71]). We let X' denote the dual space L{X, K) and for
/: 1 - ^ 7 in β, we let / ' : Y'-+X' denote its dual.

Now we denote by B the category whose objects are non-archi-
medean Banach spaces over K (satisfying condition (N)), and whose
morphism sets are B(X, Y) = {/: fe L{X, Y), | / | ^ 1}. Clearly, each
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B(X, Y) is an iϋ-module.
All (covariant) functors F: B—>B are assumed to satisfy the

following additional conditions:
(1) For each pair (X, Y) of objects in B, the induced map

Fxγ: B(X, Y)-»B{F{X),F{Y)) is iMinear, and
(2) For each feB(X, Y), \Fxγ{f)\ ^ | / | . Such functors are

called functors in the category B.
A functor G: B—>B is a subfunctor of F: B—*B if for each X

in B, G(X) is a closed subspace of F(X), and for each /: X—> F in
JB, G(/): G(X) — G(Γ) is the restriction of F(f): F(X)-*F(Y) to
G(X).

Natural transformations t: F-^G where F and G are functors in
B, are assumed to satisfy, in addition to the usual naturality condi-
tion, the following conditions:

(1) For each X in B, tx: F(X)->G(X) is JSΓ-linear.
(2) | ί | = sup{|£x|: X in B) < oo,
Two functors F and G are isometric if there exist natural trans-

formations t: F-^G and u: G-+F such that % ί = 1*. and t u = lσ

and for each X in B, tx and wx are isometries A functor F is
isometrically embedded in G if there is a natural transformation
establishing an isometry of the functor F and a subfunctor of G.

For functors F and G in the category 2?, we denote by [F, G]
the class of all natural transformations from F to G. Note that if
[F, G] is a set, [F, G] has a natural structure of a non-archimedean
Banach space with norm defined as in (2) above.

For each A in B, we define the functor ΩA by:
(1) ΩA{X) = L(A, X), for X in B
(2) UfeB(X, Y), then i^(/): i^(X)->i^(Γ) is the morphism

(ΩA(f))(g)=f.g, for geΩA(X).
For each A in Z?, we define the functor ΣA by:

(1) ΣA(X) - A (g) X (See [6, p. 73])
(2) If feB(X, Y), then 2^(/): 2^(X) -*ΣA{Y) is the morphism

1 ®
Note that for any heL(A, B), there corresponds a natural trans-

formation Σh: ΣA —• 2^ defined by:

For each X in J?, 2V 2^ -— 2^ is equal to h (x) l x 6 L(2^X, ΣBX).

3* Compact Functors*

DEFINITION. A functor F: B—> B is compact (resp. of finite rank),
if whenever /: Z-> 7 in β is compact (resp of finite rank), then
F(f): F(X)-+(F(Y) is compact (resp. of finite rank).

Here "compact" means "eompletement continue" in [6, p. 72],
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and " / is of finite rank" means dim f(X) < ©o.

LEMMA 1. For X in B, lx: X~> X is compact <=> dim (X) < c>o.

Proof. The assertion follows immediately from [1, Result 2, p.298]
by letting u — lx there.

THEOREM 1. Let F: B—>B be a functor. The following are
equivalent:

( i ) F is compact,
(ii) F takes finite dimensional spaces to finite dimensional spaces,
(iii) F is of finite rank.

Proof, (i) =* (ii). Let F be a compact functor. Let X be a
finite dimensional space in B. By Lemma 1, lx: X—>X is compact.
Hence, 1 ^ , = F(lx): F(X)-*F(X) is compact. By Lemma 1 again,
we see that F(X) is finite dimensional.

(ii) => (iii). We first note that a morphism /: X—» Y is of finite
rank if and only if / factors through a finite dimensional space Z as
in

X-L-Y

\ I

Z .

Clearly, if F takes finite dimensional spaces to finite dimensional
spaces and if / is of finite rank then F(f) is of finite rank.

(iii)=>(i). Let F: B->B be a functor of finite rank. Let /:
X —> Y be a compact morphism in B. By the definition of compactness
of morphisms and by the ultrametric inequality, there exists a sequence
of morphisms fn: X—> Y in B of finite rank converging, in the norm,
t o / . The morphisms F(fn): F{X)-+F(Y) are of finite rank and
\F(fn) - F(f) I S \f% - f\ for n = 1, 2, . . Hence F(f) is compact.

The following corollaries are immediate consequences of Theorem 1.

COROLLARY. The following are equivalent:
( i ) A in B is finite dimensional,
(ii) The functor ΣA is of finite rank,
(iii) The functor ΣA is compact,
(iv) The functor ΩA is of finite rank,
(v) The functor ΩA is compact.

DEFINITION. A functor F: B—>B is of null type (type N in [4,
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p. 75]) if F{K) = 0.

COROLLARY, // a functor F is of null type then it is compact.

4. Duals of compact functors* In addition to all the conditions
that are imposed on K in § 2, we shall require throughout this section
that the scalar field K is maximally complete. We will continue to
use the same letter B to designate the category of all non-archimedean
Banach spaces over K satisfying this additional assumption.

LEMMA 2. For each X in B, the natural morphism ax: X—>X"
is an isometric embedding.

Proof. For x e X, ax(x) is defined by the equation {ax{x))(x') — x'(x)
for all x' eXr. Since X satisfies condition (N), for an element xeX

such t h a t x Φ 0, we can find a sequence vn (n = 1, 2, •••) of real

numbers in the value group of K such t h a t vn ^ | x \ (n — 1, 2, )

and vn—* \x\. Let aneK be chosen so t h a t \an\ = vn. Let Y be the

(closed) subspace of X generated by x. Define fn: Y-+K by

fjjcx) = κan

for fceK. Clearly, |/Λ | ^ 1. Since K is maximally complete, we can
extend each fn to some gn: X—*K such that \fn\ = \gn\ ([2]). Now,

I ax(x) I - sup{ \x'{x) |: | x'\ ^ 1 and xf e X'}

^ sup{ |f lr n (a?) | : n = 1, 2, . . . } = s u p K : n = 1, 2, •••} = | α ; | .

On the other hand, clearly we have |αz(α?)| ^ \x\. Hence ax is an
isometric embedding.

DEFINITION. The dual functor DF of a functor F: B—>B is
defined by:

(1) For each A in B, DF(A) = [F, ΣA],
(2) For each morphism e: 4 - > ΰ i n B , DF(e): DF(A) ->DF(B)

is defined by the equation (DF(e))(t) = ^ β ΐ.
It will become evident in the course of the proof of Theorem 2

that DF(A) is actually a non-archimedean Banach space.
For a functor F: B-+B, we define the functor Fu: B-+B by:
(1) For each A in #, FU(A) = {F(A'))f

(2) For each morphism /: A -> B in #, i^(/) is equal to (F(f'))'.

THEOREM 2. For any functor F: B~*B, the dual functor DF
is isometrically embedded in Fu.
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Proof. (Mityagain-Shvarts-Linton). Let F: B—>Bbe a functor.
For each A in B, we define the morphism in B, vA: DF(A) —> (F(A'))',
by: vA(t) = Tr tA for teDF(A) .= [F, 2^]. Here TV is the trace map.
(Clearly, \vA\ ̂  1). We would like to show that, for each A, this
morphism vA: DF(A) —> i ^ A ) is an isometric embedding. To this

end, we introduce the functor Σ'i by setting Σ'ί(X) = (A ® X)" for

X in 5, and Σ'l(f) = (1A <g) / ) " for /: X-+ F in # . Let

F Γ ( Λ ) - [F, Σ"A\ .

By a proof similar to that of [3, Lemma (4.10), p. 339], we show
easily that FT(A) is a set (hence a non-archimedean Banach space). By

Lemma 2, A ® X is isometrically embedded in (A (x) X)". This means
that the functor ΣA is isometrically embedded in ΣA. The natural
transformation ΣA —• 2^' gives rise to an isometric embedding

j A : DF{A)-*FT{A).

The theorem follows immediately from the existence of a morphism
kA in B making the following diagram commutative

VA

DF(A) > FU{A)

3A\ kA

FT{A) .

This part of the proof, however, follows exactly the same line of
argument as in [3, p. 340-41]. So we shall refrain from repeating
the argument here.

COROLLARY. // the functor F: B—*B is of null type, then so is
its dual.

THEOREM 3. Let F: B-*B be a functor. Then:
( i ) If F is compact, then so is its dual DF.
(ii) If F takes finite dimensional spaces to finite dimensional

spaces, then so does its dual DF.
(iii) If F is of finite rank, then so is its dual DF.

Proof. In view of Theorem 1, it is sufficient to prove (ii).

Suppose F takes finite dimensional spaces to finite dimensional
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spaces. Let X be a finite dimensional space in B. Then Xf is finite
dimensional. By the assumption, F(X') is finite dimensional. Hence
(F(X')Y = FU(X) is finite dimensional. By Theorem 2, DF is isome-
trically embedded in Fu. Obviously, DF(X) is finite dimensional.
This completes the proof.
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