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Suppose that L(x) is a differential operator and R({) a
continuous function, and consider the differential equation
(*) L(x) = R(t). Then a problem in approximation theory is
whether we can approximate a solution xz(f) of (*) uniformly
with a sequence of polynomials P, for which we have || R(t) —
L(P){| £ v, where ||-|| is a certain norm and 7, a specific
sequence of nonnegative constants. This is done here for a first
order nonlinear differential operator L and for two different
norms, the uniform norm and the L, norm (1 < p < + o).

Consider the differential equation:
(1) L(z) = 2’ + Q(t, «) = E(?)

where the functions @, R are defined and continuous on [0, 1] X (— oo,
+ o) and [0, 1] respectively. Suppose also that there exists a unique
solution x(¢) of (1) satisfying 2(0) = 0. On C[0, 1] consider the norms:

(2) 1£11 = sup 1 7@ 11 = [ [ 170 1a] @z D),
tefo0,1] 0

and let

(3)  p=inf L@ — L), gt = inf || L) — LA,

where 2(t) is the solution of (1) with x(0) = 0, and /7, is the set of
all polynomials of degree less than or equal to %, which satisfy the
condition P,(0) = 0, (or P}(0) = 0). By (3), if ¢,, (or &}), is a sequence
of positive constants such that lim,_..e, = 0, (or lim, &} = 0), then
there exist sequences of polynomials P,, (or P}), €1l, such that

(4) I L(x) — LP) || S tta + €0y | L(@) — L(P) ], = f7 + &7,

for every n=1,2.-+.

Our aim here is to show that, for quite a large class of equations
of the type (1), it is possible to have the polynomials satisfying the
first or the second of (4) converge uniformly, along with their deriva-
tives, to the solution x(¢) and its derivative respectively.

It should be noted that if the infimum in either one of (3) is
attained for every = (and this is not always true), then we can choose
g, =0,(oref =0, n=12,+--, and consider in (4) only the equality
sign.
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The results of this paper are related to those of Huffstutler and
Stein [2], [3], which are taken as special cases for certain classes of
equations of the form (1).

In what follows, D = maX,c;cm-i {1, SUDiepo,1 {| 2(E) |3}

2. Main result. THEOREM. Let the function Q be such that

Jor every (t, u, v) €[0,1] X (— oo, 4+ o) X (— oo, + co) where

any positive constant for m = 1
S
such that AD < [m(m — D] for m > 1,

and suppose further that a sequence of polynomials P,, (or P}), satis-
fies the given tnitial condition and the first of (4), (the second of 4),
for every m. Then the sequence P,, (or P}), converges uniformly to
the solution «(t) on [0.1]. In addition, the sequence P,, (or P)),
converges uniformly (w.r.t. the L, norm) to the derivative z'(t).

Proof. Case I (Uniform norm). We show first that lim,_..L(P,(f)) =
L(z(t)) uniformly on [0, 1]. In fact, there exists a sequence of poly-
nomials S,, of degree less than or equal to =, such that S,(0) =0,
and lim,.. S(t) = z“(t), ¢ = 0,1, uniformly on [0,1]. We can take,
for example, the Bernstein polynomials

(5) S, = B,(x; t) = ;Ox(%) (Z) th(1 — )t

Thus, by use of (3), we obtain

1L@) — L) = 1 + &0 < I L(0) — LS + &,
(6) < 1o = Sull + Q0 ®) — Qt, S| + =,
<o = Sl + AZ ok — SH| + .,

and the sequences in the last member of (6) tend to zero, which shows
the uniform convergence of L(P,()).

We show next that the sequence P, is uniformly bounded on [0, 1].
Let w,(t) = 2(t) — P,(t) and F,(t) = L(a(t)) — L(P,(t), t<[0, 1]; then
from (1) we obtain

F.(t) = L(@) — L@ — w,) = & + Q(t, o) — [/ — ) + Q(t, ® — w,)]
=u, + [Q, x] — Q(t, v — u,)]

which gives
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)] = || 1F.@1ds + [ 166, #(:) - @, o(s) — w.(5)|ds
= [ 1F@1ds + A [ [E 126 - @6 - w6 (] as

k=1

<A, +A St [ m1|x’°(s) — (@5(s) — ka N (s)ua(s) + -+ -

k=

+ (= D) ] ds

(7) < A+ A [3 0126 a6+ -+ a0 | ds

=1

< A, + AD S[ki (elan(s)] + (o — 1)/20) |ua(s) |2 + -« -

=1

+ luy(s)%) | ds
< A, + AD S [ﬁ: 1+ 1u,,(s)|)k] ds
< A, + mAD S’ (A + |u,(s) )" ds

where A4, is a constant determined by (6).
If m = 1, then the uniform boundedness follows easily from (7) by
a direct application of Gronwall’s inequality ([1], p. 8). Let m > 1,

q.(t) = St 1+ {u,(s)|)™ds, and choose ¢ >0 such that AD <[(1+¢&)"*
m(m — 1) and A, < ¢ for every n = (some) N. Then from (7) we have
¢.(t) = [1 + A, + mADg,(t)]"
<[1+ ¢+ mADq,(t)]" (n=N)

which, dividing by the last member and integrating from 0 to ¢{=0,
yields

(9) (14 ¢) + mADg,(t) < [ + &)™ — m(m — 1)AD]"¥™ |

(8)

which shows the uniform boundedness of

[ — 1 = |u ()] = [2()) — P.(9)]
and, consequently, the uniform boundedness of the sequence P,.

Now, we use the uniform boundedness of P, in order to show
their convergence to the solution «(f). From (1) we obtain

wt) ~ P(o)] = | 1F.@)1ds + | 106, #(6) - Qs, Po(s)ds

< 5 F)lds + AT S I — P,||a* + @+ P,
4 eeo + Pitds
< S |F.(s)|ds + mAKY \&(s) — Py(s)|ds

(10)
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where K = maX,cicn SUDcepo, {|2°7(F) + " @) Po(t) + -+ + Pi7'(H)]} in-
dependent of m, due to the uniform boundedness of the P,’s. Thus,
an application of Gronwall’s inequality in (10) gives

la(t) — P(t)] < <g iFn(s)lds>. emAK < (S Fo(0) dt) K,

Since the right side — 0 as » — co, this proves the uniform con-
vergence of the sequence P,.

The proof of the uniform convergence of the derivatives of the
P,’s follows from

() = PAO| = | L) = LP)| + 1Q(t, ) — Q(t, P,)]
< [F.(0)] + AS 120 — P

(1) < B0+ A S (o) — P02 () + (0P,

+ eee + PE@)]
< |F,@t)| + mAK|2(t) — P,(t)],

and the final expression — 0 as n— co.

Case II (L, norm). Suppose that P; is a sequence of polynomials
which satisfies the second of (4). Then (6) holds with P, replaced by
Pr, and ||-]| by ||-]|,, since the uniform convergence of S, 1 =0, 1,
implies their convergence w.r.t. the L, norm. Thus, L(P/) converges
w.r.t. the L, norm to L(x). In order to show that the P;’s are uni-
formly bounded, choose ¢* > 0, N such that AD < [(1 + ¢*)'m(m —
D] and || L{z) — L(P})||, < &¢* for every n = N. Then we obtain (as
in (7))

w0 = [ 1P s + maD | (uits)] + 17 ds
(12) < Ho |F (s)l”ds]“" + mAD g (uz(s)] + 1) nds
< &* + mAD S’ (ui(s)] + ™ ds,

and the proof follows as in the case of the uniform norm. The
uniform convergence of the P;’s follows from an inequality similar
to (10), and the L, norm convergence of the derivatives of the P}’s
from

lu @l = [F2 1L+ 1Q, ®) — Qt, © — ud)
< ||F:ll, + ADE 3, [l |,

(E is a suitable constant), and the final expression — 0 as 1 — co.
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It should be mentioned here that if lim, .., »*'max, ;| P () — x(t) | =
0, then the sequence P}’ converges uniformly to 2’(¢), and this can
be shown as in [2].

3. Example. Consider the differential equation
) 2+ 3301 + b — (1/16)[¢/ A + )]t/ + 2*) = (¢ — 1/2)'°.
Here we have m = 4, and

|Q, w) — Q, v)| = 38T |u* — v*| + (1/16)[u' — o'
= @RN(w — | + |u' — v*))

i.e., A = 3/37. If z(t) is a solution of (*) with #(0) = 0, then we have

()| < (3/37)5 rdt + (1/16)S [£/(1 + )] dt + S (t — 1/2)" dt
< 3/37 + 1/16 < 1

and, consequently, we have D = 1. Moreover, if we suppose the ex-
istence of a second solution () of (*) with y(0) = 0, then we get

1Q, ©) — QU »)| = A2 — o*| + [a* — ¢'))
(13) sdAle—yl (e +yl+ 2"+ 2yl + 2

¥+ y]?)

Now, integration of o' — ¢’ = — [Q(¢, ) — Q(t, ¥)] and use of (18) and
Gronwall’s inequality, shows the uniqueness of the solution x(t), te
[0, 1] of (*) with 2(0) = 0. Furthermore, AD = 3/37 < [m(m — 1)]* =
1/12, and the theorem applies to the equation (*). This example is
not contained in any of the results in [4], since the function @ — R
is not analytic for — 1 <¢ <1 and all z.

The authors wish to thank the referee for some helpful suggestions.
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