Pacific Journal of

Mathematics

THE DIOPHANTINE EQUATION
uu+Duw+2)u+3)=v(v+1)(v+2)

DDDDD W. BOoYD AND HERSHY KISILEVSKY




PACIFIC JOURNAL OF MATHEMATICS
Vol. 40, No. 1, 1972

THE DIOPHANTINE EQUATION u(u+1)(ee+2)(u+3)
=v(v+1)(v+2)

Davip W. Boyp aAND H. H. KISILEVSKY

In this paper we demonstrate that the equation of the
title has exactly three solutions in positive integers, namely:
1-2-3-4=2-3-4, 2-3-4-5=4-5-6 and 19-20-21-22 = 55-56-57.
The method of proof is to reduce the equation to the form
yr=o"—x+ 1.

According to the studies of Mordell, this equation has only a finite
number of solutions and each corresponds to a representation of unity
by a binary quartic form. We thus can reduce the problem to a study
of the solutions of two binary quartic forms. These forms can be
regarded as the norms of certain units in an order £ of the field Q(«)
where «* — 8« + 4 = 0. We next determine the two fundamental
units of this order. Representing the units we seek in terms of these
fundamental units, we obtain exponential equations which are then
solved by the p-adic method of Th. Skolem.

This technique was used by Ljunggren [5] in treating the equations
¥y =12 — 7, and ¥* = &* — 15.

1. Define y = u*+ 3u + 1 and 2 = v + 1, and then the equation
of the title becomes

(1) Y=o —a+1.

Mordell [6] shows that this has only a finite number of integer solu-

tions. A recent result of Baker [2] shows that for all integer solutions
of (1), one has

max(|x], |y]) < exp(10***) .

We discuss in Section 5 a feasible computational approach to solving

(1) which uses the results of §§2 and 3 and the method of Baker and
Davenport [3].

2. We now reduce our problem to the study of two binary quartic
forms. This reduction follows the paper [7] of Mordell in which he
treats the problem w(w + 1)(w + 2) = v(v + 1). Consider (1) as an
equation in the field Q(9), where * — 6 + 1 = 0. The discriminant of
x° — a4+ 1is — 23, and hence

(a) 1,0, 6" is an integral basis (— 23 is square free),

(b) there is a single fundamental unit, which we may take to be

23
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— 08, according to Delone and Fadeev [4], p. 303,
(¢) the class number of Q(9) is 1([4], p. 141).
We may now write (1) in the form

(2) y=@-—-0) +0x+6—-1).

If = is a prime in Q(4) which divides both factors of (2), then » =
0 (mod 7) hence 30° — 1 = 0 (mod 7). However N(36° — 1) = + 23 so
39* — 1 is a prime, hence 36° — 1 is the only possible prime factor of
2 — 6 and 2* + 0x + 6* — 1. Thus, (2) together with (a), (b), (c) above
implies that there are integers £k, [, a, b, ¢ such that

(3) ©— 0 = +(— 0)536* — D)} a + b0 + 6.

We may assume % and [ are either 0 or 1 by absorbing extra factors
of — @ and (36* — 1) into the squared term. Taking norms in (3) shows
that, for some integer 7,

¥ = Nz — 0) = + (23)1°.

This implies that [ = 0 and that the 4 sign should be used. Thus we
have two cases

(4) k=0 x—0=(a-+0bl -+ ct?)
(5) k=1 ©—0=—0(a+ b+ cb).

In case k& = 0, equation (4) becomes
2 — 0 = (&> — 2bc) + (2ab + 2bc — A + (b° + 2ac + ¢*)o*

which gives the following three equations:

(6) T =a>— 2bc
(7) 0="5 4+ 2ac + ¢
(8) 1=2¢ — 2ab — 2be .

If @ + ¢+ 0, then (8) implies that b = (¢* — 1)/2(a + ¢), and sub-
stitution in (7) yields

(9) 0=(— 1) + 4¢(2a + c)(a + ¢) .

Equation (9) implies that ¢|(¢* — 1)* so ¢* = 1, but then 2a + ¢ = 0 and
this means ¢ = = 1/2 which is inadmissable.

Hence, a + ¢ = 0, and so ¢ = 1 from (8). Now using (7), we have
b* = ¢, and hence v = a* — 2bc = 1 £+ 2, so

r=3o0or —1

corresponding to
y=>5orl.
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The solution 2 = -- 1 is trivial in that it corresponds to »(v + 1)(v +
2) = (— 2)(— 1)(0), while z = 8 leads to (u, v) = (1, 2).

The case k = 1 leads to a more difficult situation. Here, we obtain
from (5) the equations:

(10) r = b+ 2a¢c + ¢
(11) 0 =c¢*— 2ab — 2bc
(12) 1=a*— 2bc + b + 2ac + ¢*.

Let us define a + ¢ = d so that (10), (11) and (12) become

(13) v = b + 2d — ¢
(14) 0=c — 2bd
(15) 1=d — 2bc + b

Our first observation is that if (§, ¢, d) is a solution of (14) and (15)
then so is (— b, — ¢, — d) and these give the same value for . Hence
we may assume b = 0, say. Then (14) implies d = 0, and then (15)
implies ¢ = 0 since d* + b* = 1 for any solution of (15).

Now, (15) shows that g.c.d(d, b) = 1 and from (14), 2bd is a square
so that one of d, b is a square and the other twice a square. Thus,
there are relatively prime p and ¢ with (b, d) = (¢ 2p° or else (2¢% %
giving again two cases to consider:

(b, ¢, d) = (¢ 2pg, 2p°)

dp' — 4pg® + ¢* = 1, v = ¢* + 8p’q — 4p’¢°
(b, ¢, @) = (2¢°, 2pg, D°)

p* — 8pg® + 49" = 1, x = 4¢* 4 4p’q — 4p°¢* .

(16)
1

By inspeetion, (16) has the solutions (p, q) = (0, 1), (1, 1) giving
x=1o0r5.

And, (17) has the solutions (p, q) = (1, 0), (1, 2) giving

-

x =10 or 56 .

For our problem # = 0 and 1 are trivial cases, while x = 5,56 give
the two solutions (u, v) = (2, 4), (19, 55) which were mentioned in the
introduction.

The remainder of the papar is devoted to proving that we have
found all solutions of (16) and (17).

To investigate (16), (17) completely we notice their connection with
the ficld Q(«) where o' — 8« + 4 = 0. Observe that in this field a*/2 =7
is an integer since #* = 2o« — 1, and also 2/a = 4 — &’/2 is an integer.
Multiplying equation (16) by 4, and letting N denote the norm in Q(«),
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(18) N(ga — 2p) = 16p* — 16p¢® + 4¢* = 4
while equation (17) may be interpreted as

(19) N{ga — p) = p* — 8pg® + 4¢* = 1.

We can simplify (18) by noticing that (ga — 2p)/a = (¢ — 4p) + p(a’/2)
is an integer, and since N(«a) = 4, we have from (18) that

(20) N((q — 4p) + pa’/2) = 1.

Thus our problem reduces to finding all units in Q(a) which are of
one of the forms » + sa and » + s(an). The units lie in the order
& = Z(1, a, n, an), so our first problem is to determine the fundamental
units for #?. There are two such units since a has two real and two
complex conjugates. We mention in passing that ” is not the maxi-
mal order in Q(a). This can be shown to be Z(1, B, 5%, 5°), where
B =—1+ a2+ a’/4. (Note that & = «a). The fleld disciminant
is thus — 64-23, and one can verify that the class number of Q(«)
is 1.

3. We shall show in this section that 7 = ¢*2 and L =a — 7
are fundamental units in the order « = Z(1, «, », an). For this pur-
pose we need the following numerical data for the conjugates of «,
7 and

o, = .508347
o, = 1.793580
o, = — 1.150964 = 1(1.749969)
|, .| = 2.094543 .
Thus
n = .129209 g, = .379139
7, = 1.608465 ¢, = .185115
(1, = 2.193555 10, . = 3.774679 .

It is clear from this data that { and 7 are independent units since if
»™ = (" for nonzero m and n, we would have % = I and »; = {7
which are inconsistent since 0<%, {,, &, < 1 while 7, > 1. To proceed

further, we use the following lemma:

LEMMA. Let Q(x) be an algebraic number field, where « has
s real and 2t complex conjugates. Let w, --+, ®, be linearly
independent integers in Q(a). Let w}' denote the ith conjugate of w,,
andlet A = (wP: 1 <4, n). Write A7V = (v7: 1 <4,7 <m). Sup-
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pose that »r = s+t — 1 and that 1, +++, 0, are independent units in
the order & = Z(w,, ++-, ,). Write

€ = Z(Wf‘”l (D@7 =1, vee,m)fork =1,2 -+c,r;i=1, -+, m

and
Crprr = 2 (I¥P g =1, m),forl, -+, n.

If 1.« are not fundamental units in 7, then there is a unit ¢ in
o different from n, ««-, B, with ¢ = Y00, a;€ Z, and

(21) !a'i‘émax(eily"'yei,r‘fl)fOTi:ly"'!n‘

Proof. If %, -++, 7. are not fundamental then there is a unit #¢
and rational! numbers ¢, ---, ¢, with 0 < ¢; for all ¢ and 37 ¢, < 7/2,
such that

(22) o= e

Define b, = 2¢;/r so that b, + -+ + b, < 1.
Let b, =1—b —--- — b, and let 0., = 1.
From (22), if £t = a0, + -+« + a,0,, we obtain

la;| = | 30 pe?|
= D @) e () e

Z?)'+1
1, r =1

<eél..ie
using Holder’s inequality.
To obtain (21), we estimate the products by

la;] < el v elrtl, < max(es, ++ v, €5,01) -

The matrix 4 in our case has ¢th row (1, a;, 7;, ;). To obtain
A7 we regard (1, «;, @2, &) as a left eigenvector of the companion
matrix of a* — 8 + 4 for the eigenvalue «;. A right eigenvector for
«, is easily seen to be (— 4, &, a?, «,)". Hence A~ has jth column
8B, — 2)7'(— 4, a?, 202, 2x;)". Write W as the 4 x 3 matrix whose
first and second columns are the absolute values of the corresponding
columns of A~' and whose third column is the sum of the absolute
values of the third and fourth columns of A~'. Then we have approx-
imately:

/1.0527 .1479 .1321
W .0346 .2133 .3035 (w(i, 1))
= = (wlz, o
1360 .2379 .2898 g
. .2676  .1326 .1384
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If e(?d) = J(w(s, 5)|7;1: 5 = 1, 2,8), 26) = T(w(i, 7)|;]: 7= 1,2,8), and
w(t) = J(w(, 7): 7 =1,2,3) we have

e = ( .6637, 1.0133, 1.0359, .5514)
¢ = (.9252, 1.1982, 1.1895, .6483)
w = (1.3327, .5514, .6637, .5386) .

From equation (22) of our lemma, there is a unit ¢ = a + ba + ¢n +
dan with

Ialélylblély IClél,d:O-

It is now easy to check that these 27 possibilities give no new units.
(The computation is lessened by noticing that we must have 0 < ¢, < 1
and 0 < p,).

4. 1In this section we solve equations (18) and (20) by an appli-
cation of 2-adic analysis, as in [8] and [5].

We have shown in 3 that 7 = &*/2 and { = a — n are fundamental
units in &~ = Z(1, a, 1, an). According to equations (18) and (20), we
wish to determine all units in £ of either of the two forms » + s«
or r + s(ay), r,sc Z. We treat first » 4+ sa. For any such unit there
are integers m, n such that

(23) + (r + sa) = P
We will examine (23) modulo 2% for all k. First observe that

”=—1+2a
and

C=—-142a+a&—-a*= -1+ 2w
where
W=a+n—ages .
Treating (23) modulo 2, if m = 2u + b, n = 2v + ¢, b, c€ {0, 1}, then
+ (r+ sa) = 1 — 2a)*(1 — 20)')°C° = ¢ .

Clearly (b, c¢) = (1, 0), (0, 1) are not possible, and we rule out (1, 1) by
noticing that

wW=n—-7"=—-14+20—-nx=1+na.

Thus (b, ¢) = (0, 0) is the only possibility. Now, proceeding modulo 4
we write u = 2w + e, v = 2z + f with e, f€{0, 1}. Then

1 — 2a)+(1 — 200+ = (1 — 2a)'(L — 20)/(mod 4) .
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Treating the four cases for (e, f) we conclude that only (e, f) = (0, 0)
and (1, 0) are possible.

First consider (e, f) = (0, 0).

For any k=1

(1 _ 2(1)216 = 1 — 2y — 2k_uzr/ 4 0(215);3)
(1 —20)" =1 — 2" (1 + a + 7 + ap) + 0@2").
If (u, v) = (0, 0), then u = 2*x, v = 2y with one of © and y odd, and
k= 1. Then
(1 — 2a)"(1 — 20)*" = 1 — 2" (e + y + ya + a7y + yan)

&4 — 2 + 0@ .

Equating the coefficient of 7 and a7 in (24) to zero we have

(25) 0=y + 2+ 02
(26) 0=y+ 02 .

Subtracting gives
(27) =2+ 0@2).

Hence (26) and (27) imply x and y are even, a contradiction, and thus
(u, v) = (0, 0).

Now consider (e, f) = (1, 0). Unless (u, v) = (1, 0) we have (u, v) =
(2f2 + 1, 2%y) with one of x and % odd. Then

1 -20)"(1 — 2w)’ =1 — 200 — 2" (2 + ¥ + ya + yy + yay)

28
) 2 — g~ ) + O@")

Equating coefficients of » and a» to zero, we have

(29) 0=y + 2¢+ O2)
(30) 0=y+ 02 .

Equation (30) implies ¥y = O(2% and then (29) implies x = O(2), a con-
tradiction. Hence (u, v) = (1, 0).

Now we turn from equation (19) to equation (20) and seek units
of the form » + sa.

We first examine p™{" = =+ (r + san) modulo 2, and find that (m,
n) = (0,0) or (1,1) (mod2). Treating (m, n) = (0, 0) first, we may
write m = 2u, n = 2v and then, working modulo 4,

7721/,C20 (1 . Za)u(l . Zw)L
= (1 - 2ua)(1 — 2rw) = 1 — 2uax — 2v(a + 1 — 2n)(mod 4) .

Equating coefficients of  and « to zero shows first that v is even
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then that w is even. Thus, if (, v) # (0, 0) we may write u = 2%,
v = 2%y where k= 1 and are of x, v is odd. Then we wish to solve

(31) + (r + san) = (1 — 20)**(1 — 2w)** .
Using (24), we find that

(32) 0=2a+y+ 02)
(33) 0=1y+ 2+ 02).
Equation (33) shows y is even and (32) shows x is even, a contradiction;
hence (u, v) = (0, 0).

For the final case we have (m, #) = (1, 1)(mod 2), hence we may
writem = 2u — 1, n = 2v + 1. We observe that 7' = 2/ — 1 =3 —
an. We wish to solve

i (,r + SCY??) — 7/~2uC20r/—1C
which becomes, modulo 4,
+ (r + san) = (1 — 20)*(1 — 20)°(3 — an) (mod 4)
= —1— an+ 2ua + 2v(n — any) (mod 4) .
This implies that » and v are even. Thus, if (u, ») #= (0, 0) then u =
2Fx, v = 2%y with k£ = 1 and one of 2, ¥y odd. Then
+ (r 4 san) = (1 — 20)***(1 — 20)**(3 — an)
=3 —an — 2" (e + y + y7) + O(2F*)
which gives
(29) 0=2a+ 02
(30) 0=y+ 0@2).
This implies © and y are even, a contradiction. Hence (u, v) = (0, 0)
and (m, n) = (— 1, 1).
This completes the verification that the only solutions of (16) and

(17) are the ones obtained by inspection. Thus the only solutions of
the equation of the title are those listed in the introduction.

5. Rather than using the 2-adic method of §4, one may reduce
the equation »™(* = & (r + sa) or = (r + san) to an inequality in
linear forms of logarithms of algebraic numbers. If A~! is as in §3,
if n;, {; denote the conjugates of » and {, and if v = »"{" = a + ba +
en + dan is a unit, then

(ay by ¢, d)7 = A«l(y]lmc?, ccy 77:’1/?)[’ .

Equating ¢ and d to zero gives two pairs of equations from which the
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term 7"} can be eliminated to give
3
> s, — @)@, - 273G = 0.

Equating b and ¢ to zero gives a similar equation. One can show, by
consideration of the size of the various quantities #;, {; that m and
n must be of opposite signs. Again considering the relative sizes of
the »; and {; we obtain four inequalities:

[m log(7.7) — n log(L,3) — log g*| < (2-9)e™ ™

and

|m log(7i7,) — n log(CL,) — log v < 5™
where g%, v* k=1, 2 are in Q().
From a result of Baker [1], one can then show that max(|m|, |n]) <
10*%. The method used in Baker and Davenport [3] can then be applied
and one would expect the problem to be computationally feasible.

REMARK. We should perhaps note that we have in fact found all
solutions of the equation k(k + 2) = I(I + 1)(! + 2) in positive integers,
and these are 4.6 = 2.3-4, 10-12 = 4.-5-6 and 418-420 = 55-56-57.
This is clear since from the beginning we dealt with the equation
(v — Dy +1) =@~ D@ + 1).

Another equation which can be reduced to this is the following:
mim + 1) =nn+1)Cn + D(=61>+ 2"+ --- + 2y), for if n is a
solution of this equation, let [ = 2n, k = 2m and then k(k + 2) = I(Il +
1){{ + 2). The only even solutions for [ are [ =2 and [ =4 so the
only solutions of the equation for m and % are 2.3 = 1-2.3, and 5.6 =
2-3-5.

Acknowledgement. We are indebted to John McKay for suggesting
this problem and for many helpful discussions during its solution. He
points out that N = 19.20.21-22 = 55-56-57 is the order of a sporadic
simple group.
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