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SUMMABILITY AND FOURIER ANALYSIS

GEORGE BRAUER

An integration on SN, the Stone-Cech compactification of
the natural numbers N, is defined such that if s is a bounded
sequence and ¢ is a summation method evaluating s to o,
st ¢ =o. The Fourier transform ¢ of a summation method

o is defined as a linear functional on a space of test functions
analytic in the unit dise: if

flz) = i (n)zr, |zl <1, then ¢(f) = S/(n)do .

A functional which agrees with the Fourier transform of a
regular summation method must annihilate the Hardy space
H,. OQur space of test functions is often the space M, of
functions ftl’f(n)z”, analytic in the unit disc, such that

11 £1lsr, = lim sun[(l—’r)g e o dgj2e)ue

is finite for some p > 1. A functional I, which is well defined
on a space M, for seme p =2 such that L(1/(1 —2z)) =1 agrees
with the Fourier transform of a summation method which is
slightly stronger than convergence.

Let s = {s,} be an infinite sequence of complex numbers, that is,
a continuous function on the discrete additive semigroup of natural
numbers N. The sequence s has a continuous extension s’ to SNV,
the Stone-Cech compactification of N (s7 takes the value - if s iz
unbounded). Throughout the paper, the symbol 27 denotes the
Stone-Cech compactification of the space Z, and the continuous exten-
siorn of a function j defined on 7 to 52 will be denoted by f7; for a
description of the Stone-Cech compactification we refer the reader to
12, pp. 82-93]. We impose the norm

= LUB[S”(V) , YegN — N

on the space m, of bounded sequences. Thus i, is isometric to
C(8N — N), the ring of continuous complex functions on SN — N;
sequences differing by a null sequence are identified in m,.

Let ¢ denote a summation method-that is, a linear functional on
a subspace of m.. We assume that the s-transform of every sequence
s to which ¢ is applicable is either a continuous function on N or
else a continuous function on the half open wunit interval I: [0, 1).

o
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For example, if ¢ is representable by a summation matrix A = (a,.),
then the ¢-transform of a sequence s is the sequence ¢ given by

tn:kzoanksk n=201---,

which is continuous function on N; if ¢ is the Abel method .97, then
the ¢ transform of s is the continuous function on I given by

tr) = (1 —7) S5, 0=r<l.
n=>0

If ¢ is a regular and nonnegative summation method, then ¢ is a
functional of norm one on a closed subspace of m,. Moreover if we
denote the ¢-transform of s by ¢ then lim sup |¢| is a semi-norm on
m,. Thus by the Hahn Banach theorem, the linear functional ¢ may
be extended to a nonnegative linear functional on m, which satisfies

(1) |¢(s)| = limsup [2] ,

for each bounded sequence s; we shall denote this extension of ¢ also
by ¢; throughout the paper we will assume that ¢ has been extended
to m, wn such a way that (1) 2s fulfilled. Such an extension is never
unique, and the results to be described hold for each such extension
@:

" As a linear functional on m,, ¢ gives rise to a nonnegative measure
on AN which we also denote by ¢. Since g is a regular summation
method, the measure ¢ is concentrated on SN — N — we have

g”dg = 1. We shall write Ssdg_b for Ss[f]dip' .

Using (1) we can show

REMARK. If s is a bounded sequence and ¢ 1is a regular mon-
negative summation method which is representable by etther a summa-
tion matriz or a sequence-to-function tramsformation, then

liminft¢ < S sd¢ < limsupt,
o

where t denotes the g-transform of s.

The Abel summation method .o induces translation-invariant
measures on AN. This summation method will play a vital role in

our discussion of Fourier transforms of sequences.

1. L? Spaces. If p=1 and ¢ is a regular summation method
which is representable either by a summation matrix or by a sequence-
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to-function transformation, we define L”(g¢) as the space of sequences
s with the property that for each ¢ > 0 there is a bounded sequence
8 sueh that the sequence |s — s|® has a ¢ tramsform whose limit
supertor is bounded in absolute value by ¢; this definition is more
restrictive than the usual definition of L? spaces. If s is a sequence
in an L? space we define

S sdg = lim S sdé ,
BN £—0 BN

where {s} is a set of bounded sequences which approximate s in the
sense that for each ¢ > 0, there is a bounded sequence s** such that
the limit superior of the g-transform of |[s — s'|? is less than & in
absolute value. We norm L* by:

It = ([ 1s1rds) " = tim [ {51 as |

(Clearly the limit is independent of the choice of {s*}).

By Holder’s inequality we have that for 1 < q¢ < p, L*(¢) & L),
and moreover ||s|l, =< [|s]],.

As usual we identify two sequences s and ¢ in L*(¢) if

lls —tl,=0.

THEOREM. Let ¢ be a regular nonnegative summation method and
let s be a sequence in L*(¢), p = 1. Let t denote the ¢-transform of
|s]?. Then

nminftgglsv@ﬁglnnsupt<<m.

In particular if ¢ evaluates the sequence |s,|* to ¢, then

SMW¢:0.

Proof. We deal only with the case where ¢ is represented by a
summation matrix A = (a,,) — the case where ¢ is representable by
a sequence-to-function may be dealt with in a similar fashion. Let
52 be a set of bounded sequences approximating s, that is, for each
¢ > 0 there is a bounded sequence s such that

limsup S a,. /s, — s, 9P < ¢.
k=0

If we take ¢ =1,
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limsup 3 @, |s.1”
i

=2 [lim sup 3, 5,717
o0

+ limsup > a,, 1, — 5,0 }p:l
£ W
= 2/ [lmsup > a,. 8.7 7 + 1} .

Hence limsup [¢! is finite.
Also
[1spaa = tim | 157 0d4 .

o c—g U

Since each s“' is a bounded sequence.

liminf ¢, = Himinf > a,, e

n ==

[0}

S/.‘(:}P_i' CL

IA

| 12 1da + o

=

limsup > a,, s )7 + C &'

==

A
17N

iA

limsupt, + C,&"",

where C, and C, are numbers not depending on ¢. If we let ¢ tend
to zero we have the theorem.

Holder’s inequality togethsr with the technigque of the above
proof may be used to yield:

THEOREM. Let ¢ be o regular nonnegative suwmmatior, method
and et 5 be a sequence in L'o) » = 1. If t denoles the o-transform
of 5. then

liminft < \ sdo = Hmsupt .

I poarticular of ¢ evaluates s lo o, é/zen‘ sdo = o .

JEN

2, FVourier transforms. The Fourier transform ¢ of a summation
method ¢ is defined as a functional on a space M of test functions
&y = Xl f(m)zr analytic in the unit dise D: |zl < 1, given by

o) (fm) do
b . g

Fonyds

fl
oy ey

the Fourier transform & of a sequence s = {s,} is defined as the linear
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functional on M given by

() = | #Fmyds
= |sfmdss, se,

where .07 is any measure on SN — N induced by the Abel method.
The more customary definition of the Fourier transform, namely
as the function of [0, 27] given by

g exp(—1 nw)s, d. 0=a<lr,
N

is insufficient; S. P. Lloyd has given examples of sequences s such
that |s,| = 1 for all @ and such that g exp(—1 na)s, d.&7 vanishes for
N

all a cf [6]. Later we shall make some remarks about sequences s
which may be written

s, = >, a, exp(t a, k),
where the Fourier coefficients «, are given by the formulas
a, = Sﬁ s, exp(—1 a,k)d.o” ,
N

(that is, the sequence s, exp(tak) is Abel summable for all «), where
each «, is a number in [0, 27).
By H,, p =1 we understand the Hardy space of functions f

analytic in D: |z| < 1 such that gz.- | f(re’y|*df is bounded for 0 =<
0
r <1 [ef. 5 pp. 39].

THEOREM. If L is a linear functional on a space of functions
analytic in D which agrees with the Fourier transform ¢ of a regular
summation method ¢, then

(1) L(f) =0
for each fe M which is also in H,; also
(3) LA/l —2z)=1.

Proof. If fe H, then f(z) = 3.7, f(n)z", |z| < 1, and {f(n)} is a
null sequence [e¢f. 5 pp. 70]. Since ¢ is a regular method, ¢ must
evaluate {f(n)} to zero. Hence &(f) =0 for each fe H N M. To
establish (3) we simply note that since ¢ is regular, it must evaluate
the sequence {1, 1, ---} to one, that is ¢(1/(1 — 2)) = 1.
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Our spaces of test functions will be
(a) the space M,, p > 1, of functions

@) = 3wz
analytic in D, such that
1£ 11, = lim sup(L = )= [ | 760" exp i0) o2 |~

is finite-throut the paper the symbol p’ denotes the number p/(p — 1):
Two functions f, ¢ are identified in M, in case
2T
1 — )yt g Fr 17 exp i6)
0
— g(, exp 0) |*do

tends to zero as r tends to one. We norm each space M, by [ [lx,,
(b) the space of functions

1@ = 3, )z

such that

1£ .. = lim sup(L — 7) |fr exp i)

is finite. We identify two functions f and ¢ in M. in case
1 — ) |f(rexpif) — g(rexpid)|

tends to zero as » tends to 1. We norm M. by || |[,;_. For1<p<q <o
we have M, & M, of [3 pp. 623-625].
A linear functional L on a normed space M will be said to be

welldefined if L(f) = L(g) whenever ||[f —¢g|| =0, f, g M.
For p > 0 a sequence s will be said to be strongly Abel-p-sum-

mable to o if

lim (1 — 7) Z‘O[S" —oPr"=20.

The method of strong Abel-p-summability is regular for p > 0.
THEOREM. If 2 < p < oo, and L is a well-defined linear func-

ttonal on M, such that

(4) L1/l -2 =1,

then there is a summation method ¢ which includes strong Abel-p’-
summability such that



SUMMABILITY AND FOURIER ANALYSIS 39
8(f) = L(f) feM,.

Proof. We define a summation method ¢ by Sﬁ sd¢ = L(S),
N
where S(z) = >\, s,2", whenever the right hand is defined. If fe M,
then L(f) is defined and &(f) =g Fn)ds = L(f). Now let {s,} be
N

strongly Abel-p’-summable to . Then (1 —7) > |s, —a|Pr"—0.
Since > (s, — 0)2" = S(z) — o/(1 — z) we have, by the Hausdorff-Young

theorem cf [7, pp. 145], (1 — r) Sz |86y — af(L — 717ei%) [7d6 — 0;
thus |[S — 6/(1 — 2)[|y, = 0. Since L is well defined,

LS) = oL/l —2) = o

by (4). Hence s sd¢ = o, that is, the method ¢ includes strong-
N

Abel-p’-summability.
Similarly

THEOREM. If L is a well defined linear functional on M. which
satisfies (4), then there is a summation ¢ which includes strong-Abel-
1-summability such that ¢(f) = L(f), f& M.

If a summation matrix A = (a,,) has a sizable convergence field,
then lim,_. max, |a,. .| = 0; for example this condition must be satis-
fied if A has the Borel property (cf [3]).

We denote by A the the Fourier transform of the summation
method represented by the matrix A.

THEOREM. If A = (a,:) is a non-negative regular row-finite sum-
mation matric such that lim, . Lub, @] =0, € = G = Ay =0+,
then A(1/(1 — z¢®) =1 or 0 according as a is or is mot comgruent to
zero modulo 2x.

Proof. We have 1/(1 — 26 = 32 emz". If a=0 (mod 27),
then A(1/(1 — z¢**)) =1 by the regularity of A. If a % 0 (mod 27),
then since the sequence {a, ,} is nonincreasing in k%,

Z ankeika
k=0

é Sano/ 7)

where 7 is the distance of the point a from the multiples of 2x.
Thus A evaluates to zero each sequence {¢"*} such that a is not a
multiple of 27, that is, AQ/(1 — z¢*) = 0 if @ x 0 (mod 27).
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THEOREM. Let P denote the Norlund summation method, so that

the P-transform of a sequence s is the sequence {357 o DoiS:/ P}, where
the numbers p,, P, satisfy the conditions

Pn:k%pky . =01), P,— .

Then for almost all a wn [0, 27)
P1/1 — zexpia) =0 .
This result is proved in [1, pp. 325-326].

THEOREM. If s is a sequence in L*(S), 1 < p <2, then § s «a
bounded functional on M,, and

1511 < limsup(L — ) 3 |s, 17",
n=0
Proof. If p < 2, then by the Hausdorff-Young theorem
PN , i/p
(S 1701
= U L0 exp (i6) |7 dﬁ/znT“’ . felM,.

Hence, if se L*(.%), we have by Holder’s inequality

I

s =1, sy

H/‘\

lim sup (1 — 7)(2‘ w7 ) (Z [f(n)r’o”) ”

rele—

17 I, tim sumi (1 = (35 s r7) |

=0

IA

Since the last member is bounded, § is a bounded functional on M,.
If s is a bounded sequence such that the sequence {[s,|”} is Abel sum-
mable, then ||§]] < ||s||, — when § is considered a linear functional
on M,.

THEOREM. If s is a sequence wn LP(.7) 2 < p < <o, then
18] = llsli/limsup(l — ») X s, "1™,

when § 1is censtdered a jfunrctional on M,, provided that the sequence
{Is,|?} ts mot Abel summable to zero. If the sequence {|s,|”} is Abel
summable, then ||§|] = |s|l. If 8(f) =0 for all fe M,, then ||s||, = 0.

Proof. We let
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foy = s, %5, ifs, =0,

If follows from the Hausdorff Young theorem that f(z) = 3, f(n)z”' e M,,
and

111y, = lim sup[d — #) 3 [ f(m) |7/ r] ¥
= lim sup[(l —7) i ]sn‘“’r”]w{ .

7=y

Hence lf ”f[[yp 7 Oy

181 = 18D M,
= llsll, 7/lim sup[(L — ) 5 s, "] .

If the sequence {is,|’} is Abel summable to a nonzero value,
sl = sl /sl * 7 = lsll, -

If § annihilates M, it must annihilate the function f defined above,
and thus ||s]l, = 0.

We make a few remarks about the sequence s which may be
written as exponential series

S, = i a., expli,k) =01, +--,
n=0

where the numbers «, lie in the interval [0, 27) and the numbers «a,
are given by the formulas

0, = | seexp(—inhid.cs
AN

= lim (1 — 7)) s, exp( —ict, kyrt n=01,---,

=~ n -

{we assume that the sequence {s, exp (iak)} is Absl summable for
each « in [0, 27)). We also have

a, = $(1/1 — zexp(—iw,)) .

We have the following version of the Riesz Fisher theorem:

THEOREM. If > |a,l* < =, then the Fourier transforms of the
exponential polynomials

;e ] . -
S;\:J) - Z ay, exp<tank) ’ J = 1’ 2’ Tt

g

converyge to a bounded linear functional ¢ on M, in the sense that
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}{mlla — 8§87 =0,
and
ol = 3 ladf = lim |15,
when each §9 is considered a functional on M,.

Proof. Let f(z) = 3 f(n)z" be a function in M,. Then
1897(F) — 89(f)]
= |, (% o expliah)) Fidy

(1, S ar expliani) | ‘d.oz) " 17

= (2 1) 1l

A

which tends to zero as j and j” tend to infinity, where the above
integration is carried out with respect to k. Therefore, for each
fe M, the sequence {§(f)} is a Cauchy sequence of numbers and
hence converges. Let o(f) = lim §¥(f). It is readily verified that
o(f) depends linearly on f. Also

0(£)] = |Tim §9(f)|
i 1/2
< (S 1aal) 11 £ 1w, 5

hence if we regard ¢ as a functional on M, |o|| < S la;»". If
we take

fz) = 3 f(k)z*,

where
7o) = 3% a, exp(—iab)
then the sequence {|f(k)|}® is Abel summable to 3i_, |a,”; thus
[, 1700 d.sz = 11f 11t = 3 lauP

Since s9(f) = 3. |a, P} ||89] = i, |a,[. Since [|o] = lim,._.. [|§9]),
el = v |l
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