# Pacific Journal of Mathematics Γ-EXTENSIONS OF IMAGINARY QUADRATIC FIELDS ROBERT GOLD # $\Gamma$ -EXTENSIONS OF IMAGINARY QUADRATIC FIELDS ### ROBERT GOLD Let p be an odd rational prime and $E_0 = \mathcal{Q}(\sqrt{-m})$ a quadratic imaginary number field. There is a unique $\Gamma$ -extension E of $E_0$ for the prime p which is absolutely abelian. For each positive integer n there is a subfield $E_n$ of E which is cyclic of degree $p^n$ over $E_0$ and by Iwasawa the exponent of p in the class number of $E_n$ is of the form $\mu p^n + \lambda n + c$ for sufficiently large n. We here examine the analytic formula for the class number of $E_n$ and in the case p=3 give a simple condition implying that $\mu=0$ . It follows easily from this condition that there are infinitely many imaginary quadratic fields which have $\Gamma$ -extensions for the prime 3 with the invariants $\mu=0$ while $\lambda \geq 1$ . 1. Analytic formula. Let $\mathscr Q$ be the rationals, p an odd prime, n an integer $\geq 0$ , and $\zeta_{p^{n+1}}$ a primitive $p^{n+1}$ root of unity. Let $F_n$ be the subfield of $\mathscr Q(\zeta_{p^{n+1}})$ of degree $p^n$ over the rationals so that $F_n/\mathscr Q$ is cyclic, p is the unique ramified prime for the extension, and p is totally ramified. Let $E_0 = \mathscr Q(\sqrt{-m})$ , a quadratic imaginary field where (m, p) = 1 and let $E_n = F_n \cdot E_0$ , the composite field. We attempt to study the order, $e_n$ , to which p divides the class number of $E_n$ , $$h_{E_n} = p^{e_n} \cdot h' \qquad (p, h') = 1$$ by use of the classical analytic formula for an arbitrary number field k: $$\lim_{s \to 1} (s-1)\zeta_k(s) = \frac{2^{s+t}\pi^t R_k}{m_k \sqrt{|D_k|}} h_k$$ where, as usual, $R_k$ is the regulator of k; $m_k$ , the order of the group of roots of unity; $D_k$ , the discriminant of k; and s and t, the number of real and complex infinite primes of k. We note the following sequence of lemmas: LEMMA 1. $$m_{E_n}=m_{F_n}=2$$ unless $E_0=\varnothing(\sqrt{-3})$ or $\varnothing(\sqrt{-1})$ . *Proof.* By degrees: $[E_n: \mathscr{Q}] = 2p^n$ . Note that in the two excluded cases $(p, m_{E_n}) = 1$ if (p, m) = 1. LEMMY 2. $$D_{E_n}=D_{F_n}^{\imath}\cdot D_{E_0}^{\jmath n}$$ and $D_{F_n}=p^{t_n};$ $t_n=(n+1)p^n-(p^n-1)/(p-1)-1.$ *Proof.* First statement is trivial, second is proved as follows. Note that $\zeta_{p^{n+1}}$ is a distinguished element for the extension $\mathscr{Q}(\zeta_{p^{n+1}})/F_n$ in the relation its different bears to the different of the extension [3]. The computation of the different of $\mathscr{Q}(\zeta_{p^{n+1}})/F_n$ becomes then an exercise in determinants. The result combined with the well known different of $\mathscr{Q}(\zeta_{p^{n+1}})/\mathscr{Q}$ gives the expression above. Lemma 3. $$R_{\scriptscriptstyle E_n} = R_{\scriptscriptstyle F_n} {\cdot} 2^{\scriptscriptstyle a}$$ some $a \in Z$ . *Proof.* $F_n$ is the maximal real subfield of $E_n$ and the result is then well known [1]. Now let $k = E_n$ , respectively $F_n$ , in equation (1) and divide the former by the latter. Taking into account the preceding lemmas this simplifies to: $$egin{align} (2) & \lim_{s o 1} (\zeta_{E_n}(s)/\zeta_{F_n}(s)) = rac{2^a\pi^{p^n}}{\sqrt{\mid D_{E_0}\mid^{p^n}}} rac{h_{E_n}}{p^{s_n}h_{F_n}} \ & \ s_n = rac{1}{2}t_n = rac{1}{2}((n+1)p^n - (p^n-1)/(p-1) - 1) \; . \end{align}$$ On the other hand $\zeta_{E_n}(s)=\prod L(s,\chi)$ where the product is taken over all Dirichlet characters belonging to the extension $E_n/\mathscr{Q}$ . Since $g(E_n/\mathscr{Q})\cong \mathscr{Z}/2+\mathscr{Z}/p^n$ we can write $\zeta_{E_n}(s)=\prod L(s,\chi_0^i\chi^j),\ i=0,1;$ $j=0,\cdots,p^n-1$ where $\chi_0,\chi_0^2$ are the characters belonging to $E_0/\mathscr{Q}$ while $\chi_1^0,\cdots,\chi_1^{p^n-1}$ are the characters belonging to $F_n/\mathscr{Q}$ . Hence $\zeta_{E_n}(s)=\prod L(s,\chi_0^j),\ j=0,\cdots,p^n-1$ and therefore $\zeta_{E_n}(s)/\zeta_{E_n}(s)=\prod L(s,\chi_0\chi^j),\ j=0,\cdots,p^n-1$ . Furthermore the $\chi_1^{pk},\ k=0,\cdots,p^{n-1}-1$ are the characters belonging to $F_{n-1}/\mathscr{Q}$ and therefore $$\frac{\zeta_{E_n}(s)/\zeta_{F_n}(s)}{\zeta_{E_{n-1}}(s)/\zeta_{F_{n-1}}(s)} = \prod_{0 < j < p^n \atop (j,p) = 1} L(s,\chi_0\chi_1^j) .$$ Note in passing that $\chi_1$ is an even character and takes on the $p^n$ th roots of unity as values. Comparing (2) and (3) we may write Note that $\chi_0$ is primitive modulo $d=D_{E_0}=$ the conductor of $E_0/\mathscr{Q}$ , while $\chi_1^j$ , $(j,\,p)=1$ is primitive modulo $p^{n+1}=$ the conductor of $F_n/\mathscr{Q}$ . It follows that $\chi_0\chi_1^j$ , $(j,\,p)=1$ is primitive with modulus $w=dp^{n+1}$ and is an odd character. It is well known then that $$L(1, \chi_{\scriptscriptstyle 0}\chi_{\scriptscriptstyle 1}^{\scriptscriptstyle j}) = \frac{\pi i \tau(\chi_{\scriptscriptstyle 0}\chi_{\scriptscriptstyle 1}^{\scriptscriptstyle j})}{w^2} \sum_{\substack{0 < k < w \\ (k, w) = 1}} \chi_{\scriptscriptstyle 0} \overline{\chi}_{\scriptscriptstyle 1}^{\scriptscriptstyle j}(k) k$$ where $\tau(\chi_0\chi_1^j)$ is the classical Gauss sum and $|\tau(\chi_0\chi_1^j)| = \sqrt{w}$ . Comparing now (4) and (5) and taking absolute values we see $$(6) \qquad \frac{\prod\limits_{\substack{(j,p)=1\\0< j< p^n \ 0< k< w\\d^{\varphi(p^n)}p^{(n+1)\varphi(p^n)}}} \sum\limits_{\substack{k}} \chi_0 \overline{\chi}_1^j(k)k|}{d^{\varphi(p^n)}p^{(n+1)\varphi(p^n)}} = \frac{h_{E_n}h_{F_{n-1}}}{h_{F_n}h_{E_{n-1}}}.$$ Next we examine the sum appearing in (6). $$egin{aligned} S_j &= \sum\limits_{0 < k < w} \chi_0 \overline{\chi}_1^j(k) k = \sum\limits_{lpha = 0}^{d-1} \sum\limits_{i = 0}^{p^{n+1}-1} \chi_0 \overline{\chi}_1^j(i + lpha p^{n+1}) (i + lpha p^{n+1}) \ &= \sum\limits_{lpha = 0}^{d-1} \sum\limits_{i = 0}^{p^{n+1}-1} \chi_0(i + lpha p^{n+1}) \overline{\chi}_1^j(i) i + lpha p^{n+1} \sum\limits_{i = 0}^{p^{n+1}} \overline{\chi}_1^j(i) \chi_0(i + lpha p^{n+1}) \;. \end{aligned}$$ But since $$\sum_{lpha=0}^{d-1}\sum_{i=0}^{p^{n+1}-1}ar{\chi}_{\scriptscriptstyle 1}^{j}(i)\chi_{\scriptscriptstyle 0}(i+lpha p^{n+1})i=\sum_{i=0}^{p^{n+1}-1}ar{\chi}_{\scriptscriptstyle 1}^{j}(i)i\sum_{lpha=0}^{d-1}\chi_{\scriptscriptstyle 0}(i+lpha p^{n+1})=0$$ we have $$S_{i}=p^{n+1}\sum\limits_{i=0}^{p^{n+1}-1}\overline{\chi}_{i}^{j}(i)\sum\limits_{lpha=0}^{d-1}lpha\chi_{0}(i+lpha p^{n+1})$$ . We now make the following assumption for the sake of simplifying notation and proofs: (A) $p^{n+1} \equiv 1(d)$ . It then follows that $$S_i = p^{n+1} \sum_i \overline{\chi}_i^j(i) \sum_{\alpha} \chi_0(i\alpha + \alpha)$$ . Letting $w_k = \sum_{\alpha=0}^{d-1} \alpha \chi_0(\alpha+k)$ one can easily deduce that $w_0 = w_1$ , $w_{k+d} = w_k$ , and $w_k = w_0 + d \sum_{\alpha=0}^{k-1} \chi_0(\alpha)$ . Then $$egin{aligned} S_j &= p^{n+1} \sum_{i=0}^{p^{n+1}-1} \overline{\chi}_1^j(i) w_0 + d \sum_{lpha=0}^{i-1} \chi_0(lpha) \ &= p^{n+1} w_0 \sum_{i=0}^{p^{n+1}-1} \overline{\chi}_1^j(i) + d \sum_{i=0}^{p^{n+1}-1} \overline{\chi}_1^j(i) \sum_{lpha=0}^{i-1} \chi_0(lpha) \ &= d p^{n+1} \sum_{i=0}^{p^{n+1}-1} \overline{\chi}_1^j(i) \cdot lpha_i \; ; \quad ext{where} \quad lpha_i &= \sum_{lpha=0}^{i-1} \chi_0(lpha) \; . \end{aligned}$$ Comparing this last result with (6) we see that (7) $$\prod_{\substack{(j,p)=1\\0 \leq i \leq n^{n+1}}} \sum_{i=0}^{p^{n+1}-1} \alpha_i \overline{\chi}_1^j(i) = \frac{h_{E_n} h_{F_{n-1}}}{h_{F_n} h_{E_{n-1}}},$$ and again $\alpha_i = \sum_{\alpha=0}^{i-1} \chi_0(\alpha)$ . We reduce our concern now to the power of p occurring in each member of (7). By results of Iwasawa $(p, h_{F_n}) = (p, h_{F_{n-1}}) = 1$ while for sufficiently large n: ord<sub>p</sub> $(h_{E_n}) = \mu p^n + \lambda n + c$ , ord<sub>p</sub> $(h_{E_{n-1}}) = \mu p^{n-1} + \lambda (n-1) + c$ ([2]). Therefore (8) $$\operatorname{ord}_{p} \prod_{0 < j < p^{n+1}} \sum_{i=0}^{p^{n+1}-1} \alpha_{i} \overline{\chi}_{1}^{j}(i) = \mu \varphi(p^{n}) + \lambda$$ . It is clear that $\alpha_i \in \mathcal{X}$ and hence $\sum_{i=0}^{p^{n+1}-1} \alpha_i \overline{\chi}_i^j(i)$ is an integer in $\mathcal{Q}(\zeta_{p^n})$ . In fact, $\prod \sum \alpha_i \overline{\chi}_i^j(i)$ is simply the absolute norm of this integer. Hence $$\begin{array}{l} \mu \varphi(p^n) \, + \, \lambda = \operatorname{ord}_p \, \mathscr{N}_Q \left( \sum\limits_{i=0}^{p^{n+1}-1} \alpha_i \chi_1(i) \right) \\ = \operatorname{ord}_p \, \sum\limits_{i=0}^{p^{n+1}-1} \alpha_i \chi_1(i) \, \, . \end{array}$$ Here $\mathfrak{p}$ is the unique prime of $\mathscr{Q}(\zeta_{p^n})$ dividing p. We now rewrite $\sum \alpha_i \chi_1(i)$ in terms of an integral basis of $\mathcal{O}(\zeta_p n)$ . Let g be a primitive root modulo $p^{n+1}$ , i.e. $\bar{g}$ generates $(\mathcal{Z}/p^{n+1})^*$ . Then $\sum_{i=0}^{p^{n+1}-1} \alpha_i \chi_1(i) = \sum_{s=0}^{p(p^{n+1})-1} \alpha_{g_s} \chi_1(g^s)$ where $0 < g_s < p^{n+1}$ and $g_s \equiv g^s(p^{n+1})$ . Then $\eta = \chi_1(g)$ is a primitive $p^n$ th root of unity and $$\sum_{s=0}^{arphi\,(p^{n+1})-1}\chi_{\scriptscriptstyle 1}\!(g^s)lpha_{g_s}=\sum_{s=0}^{arphi\,(p^{n+1})-1}\eta^slpha_{g_s}$$ . Since 1, $\eta$ , $\cdots$ , $\eta^{\varphi(p^n)-1}$ form a $\mathscr{Z}$ -basis for the integers of $\mathscr{Q}(\zeta_{p^n})$ we may rewrite this last sum, using identities of the form $1 + \eta^{p^{n-1}} + \cdots + \eta^{(p-1)p^{n-1}} = 0$ , as $$\textstyle \sum_{s=0}^{\varphi(p^{n+1})-1} \eta^s \alpha_{g_s} = \sum_{s=0}^{\varphi(p^n)-1} \eta^s \sum_{i=0}^{p-2} \left( \alpha_{g_{s+ip^n}} - \alpha_{g^{\varphi(p^n)+t+ip^n}} \right)$$ where $0 < t < p^{n-1}$ and $t \equiv s(p^{n-1})$ . It follows from (9) then that (10) $$\mu \varphi(p^n) + \lambda = \operatorname{ord}_{\mathfrak{p}}^{\varphi(p^n)-1} \eta^s \sum_{i=0}^{p-2} (\alpha_{g_{s+ip^n}} - \alpha_{g_{\varphi(p^n)+t+i\mathfrak{p}^n}}).$$ For sufficiently large n the left member of (10) is $\geq \varphi(p^n)$ if and only if $\mu > 0$ . However the right member is greater than $\varphi(p^n)$ if and only if $\mathfrak{p}^{e(p^n)} = (p)$ divides the algebraic integer in brackets. Since this integer is written in terms of an integral basis it is divisible by (p) if and only if the coefficients of $\eta^s$ is divisible by p for every s. Hence $\mu > 0$ if and only if p divides (11) $$\sum_{i=0}^{p-2} (\alpha_{g_{s+ip}n} - \alpha_{g_{\varphi(p^n)+t+ip}n}) \qquad s = 0, 1, \dots, \varphi(p^n) - 1.$$ 2. Special case of p = 3. If we specialize to p = 3, s = 0 we may proceed in the following manner. For p=3, s=0 equation (11) reads (12) $$\alpha_{g_0} + \alpha_{g_{3}n} - \alpha_{g_{(3}n)} - \alpha_{g_{3}n+\varphi(3^n)}.$$ Clearly $g_0 = 1$ , $g_{3^n} = 3^{n+1} - 1$ ; while for appropriate choice of g we have $g_{\varphi(3^n)} = 3^n + 1$ (resp. $2 \cdot 3^n + 1$ ) and $g_{\varphi(3^n)+3^n} = 2 \cdot 3^n - 1$ (resp. $3^n - 1$ ). Hence (12) reads, letting $M(m) = \sum_{n=0}^{\infty} \chi_0(\alpha)$ , (13) $$\frac{M(0) + M(3^{n+1}) - M(3^n) - M(2 \cdot 3^n - 2)}{(\text{resp. } M(0) + M(3^{n+1} - 2) - M(2 \cdot 3^n) - M(3^n - 2))} .$$ Clearly M(0) = 0 and recalling that (A) $3^{n+1} \equiv 1$ (d) we see that $M(3^{n+1}-2) = M(d-1) = 0$ as well. Since $\chi_0(-1) = -1$ we have the trivial but useful identity M(m) = M(kd-m-1), kd-m-1 > 0. By this it follows that $M(2 \cdot 3^n - 2) = M(kd + 1 - 3^n - 2) = M(kd - 3^n - 1) = M(3^n)$ (resp. $M(3^n - 2) = M(2 \cdot 3^n)$ ). Hence (13) reduces to $-2M(3^n)$ (resp. $-2M(2 \cdot 3^n)$ ) and so $\mu > 0$ if and only if $M(3^n) \equiv 0$ (3) (resp. $M(2 \cdot 3^n) \equiv 0$ (3)). Again by (A): $M(2 \cdot 3^n) = M(kd + 1 - 3^n) = M(3^n - 2) = M(3^n) - \chi_0(3^n) - \chi_0(3^n - 1)$ . Since both congruences above must be satisfied it follows that $\mu > 0$ if and only if $\chi_0(3^n) + \chi_0(3^n - 1) \equiv 0$ (3). Multiplying by $\chi_0(3) \neq 0$ we have $[\chi_0(3^n) + \chi_0(3^n - 1)] = \chi_0(3) = \chi_0(1) - \chi_0(2)$ . Hence we may finally state in the language of Iwasawa THEOREM. Let $E_{\infty} = \bigcup E_n$ be the absolutely abelian $\Gamma$ -extension for the prime 3 of $\mathcal{Q}(\sqrt{-m})$ ; (m, 3) = 1. If 2 does not split in $\mathcal{Q}(\sqrt{-m})/\mathcal{Q}$ then the invariant $\mu$ equals 0. EXAMPLE 1. $E_0=\mathcal{Q}(\sqrt{-5})$ . Since $\chi_0(3)=+1$ , 3 splits in $\mathcal{Q}(\sqrt{-5})/\mathcal{Q}$ and it is easy to see from the structure of the genus field for $E_n/E_0$ that $\lambda \geq 1$ . On the other hand, $\chi_0(2)=0$ and therefore $\mu=0$ . Obviously all $\mathcal{Q}(\sqrt{-m})$ for $m\equiv 7,10$ (12) behave in this manner. EXAMPLE 2. $E_0=\mathcal{O}(\sqrt{-23})$ . This field has class number 3 and is therefore of some interest. Unfortunately $\chi_0(2)=1$ , but we may use the remark above that $\mu>0$ if and only if $M(3^n)\equiv 0$ (3). By (A): $M(3^n)=M(3^{-1})=M(8)$ in this case. But $M(8)=4\not\equiv 0$ (3) and so again $\mu=0$ . #### REFERENCES <sup>1.</sup> H. Hasse, Uber die Klassenzahl Abelscher Zahlkörper, Akademie-Verlag, 1952. <sup>2.</sup> K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc., **65** (1959). 3. S. Lang, Algebraic Numbers, Addison-Wesley, 1964 (III, 2) Received March 12, 1970. The contents of this paper are part of the author's Ph. D. thesis, M. I. T., 1968, written under Professor N. Ankeny. The author would like to thank Professors Ankeny and K. Iwasawa for their aid and encouragement. OHIO STATE UNIVERSITY ## PACIFIC JOURNAL OF MATHEMATICS #### **EDITORS** H. SAMELSON Stanford University Stanford, California 94305 C. R. HOBBY University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007 RICHARD ARENS University of California Los Angeles, California 90024 # ASSOCIATE EDITORS E. F. BECKENBACH B. H. NEUMANN F. Wolf K. YOSHIDA #### SUPPORTING INSTITUTIONS UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan # **Pacific Journal of Mathematics** Vol. 40, No. 1 September, 1972 | Alex Bacopoulos and Athanassios G. Kartsatos, <i>On polynomials</i> | | |------------------------------------------------------------------------------------|-----| | approximating the solutions of nonlinear differential equations | 1 | | Monte Boisen and Max Dean Larsen, Prüfer and valuation rings with zero | | | divisors | 7 | | James J. Bowe, <i>Neat homomorphisms</i> | 13 | | David W. Boyd and Hershy Kisilevsky, <i>The Diophantine equation</i> | | | $u(u+1)(u+2)(u+3) = v(v+1)(v+2)\dots$ | 23 | | George Ulrich Brauer, Summability and Fourier analysis | 33 | | Robin B. S. Brooks, On removing coincidences of two maps when only one, | | | rather than both, of them may be deformed by a homotopy | 45 | | Frank Castagna and Geert Caleb Ernst Prins, Every generalized Petersen | 52 | | graph has a Tait coloring | 53 | | Micheal Neal Dyer, Rational homology and Whitehead products | 59 | | John Fuelberth and Mark Lawrence Teply, <i>The singular submodule of a</i> | | | finitely generated module splits off | 73 | | Robert Gold, $\Gamma$ -extensions of imaginary quadratic fields | 83 | | Myron Goldberg and John W. Moon, <i>Cycles in k-strong tournaments</i> | 89 | | Darald Joe Hartfiel and J. W. Spellmann, <i>Diagonal similarity of irreducible</i> | | | matrices to row stochastic matrices | 97 | | Wayland M. Hubbart, Some results on blocks over local fields | 101 | | Alan Loeb Kostinsky, <i>Projective lattices and bounded homomorphisms</i> | 111 | | Kenneth O. Leland, Maximum modulus theorems for algebras of operator | | | valued functions | 121 | | Jerome Irving Malitz and William Nelson Reinhardt, Maximal models in the | | | language with quantifier "there exist uncountably many" | 139 | | John Douglas Moore, Isometric immersions of space forms in space | | | forms | 157 | | Ronald C. Mullin and Ralph Gordon Stanton, <i>A map-theoretic approach to</i> | | | Davenport-Schinzel sequences | 167 | | Chull Park, On Fredholm transformations in Yeh-Wiener space | 173 | | Stanley Poreda, Complex Chebyshev alterations | 197 | | Ray C. Shiflett, Extreme Markov operators and the orbits of Ryff | 201 | | Robert L. Snider, Lattices of radicals | 207 | | Ralph Richard Summerhill, <i>Unknotting cones in the topological</i> | | | category | 221 | | Charles Irvin Vinsonhaler, A note on two generalizations of $QF - 3$ | 229 | | William Patterson Wardlaw, Defining relations for certain integrally | | | parameterized Chevalley groups | 235 | | William Jennings Wickless, Abelian groups which admit only nilpotent | | | | |