Pacific Journal of Mathematics

CYCLES IN *k*-STRONG TOURNAMENTS

MYRON GOLDBERG AND JOHN W. MOON

Vol. 40, No. 1 September 1972

CYCLES IN *k*-STRONG TOURNAMENTS

MYRON GOLDBERG AND J. W. MOON

A tournament T_n with *n* nodes is k-strong if k is the largest integer such that for every partition of the nodes of T_n into two nonempty subsets A and B there are at least k arcs that go from nodes of A to nodes of B and conversely. The main result is that every k -strong tournament has at least k different spanning cycles.

1. Introduction. A *tournament* T_n consists of a finite set of nodes 1, 2, \cdots , n such that each pair of distinct nodes i and j is joined by exactly one of the arcs \overrightarrow{ij} or \overrightarrow{ji} . If the arc \overrightarrow{ij} is in T_n we say that *i* beats *j* or *j* loses to *i* and write $i \rightarrow j$. If each node of a subtournament A beats each node of a subtournament B we write $A \rightarrow B$ and let $A + B$ denote the tournament determined by the nodes of A and B. A tournament T_n is k-strong if k is the largest integer such that for every partition of the nodes of T_n into two nonempty subsets A and B there are at least k arcs that go from nodes of A to nodes of B and conversely; a tournament T_n is strong if $n = 1$ or if it is k-strong for some positive integer k. If a tournament T_n is not strong, or weak, it has a unique expression of the type $T_n = A +$ $B + \cdots + J$ where the nonempty components A, B, ..., J all are strong; we call A and J the top and bottom components of T_n . (The top or bottom component of a strong tournament is the tournament itself.)

An *l*-path is a sequence $\mathcal{P} = \{p_1, p_2, \cdots, p_{l+1}\}\$ of nodes such that $p_i \rightarrow p_{i+1}$ for $1 \leq i \leq l$; we assume the nodes of \mathcal{P} are distinct except that p_{i+1} and p_i may be the same in which case we call the sequence an *l-cucle*; it is sometimes convenient to regard a single node as a 0 path or a 1-cycle. A spanning path or cycle of T_n is one that involves every node of T_{ν} .

Camion [1] proved that every strong tournament contains a spanning cycle. Our main object is to prove the following result.

THEOREM 1. Any k-strong tournament contains at least k spanning cycles.

More generally, we shall prove the following result.

THEOREM 2. Let p denote any node of any k-strong tournament T_n ; if $3 \leq l \leq n$, then p is contained in at least k l-cycles.

In what follows we assume that the node p and the k-strong tournament T_n are fixed. The case $k = 1$ is treated, in effect, in [2; p. 6] so we may suppose that $k \geq 2$; since each node of T_n must beat and lose to at least k other nodes, it follows that $2k + 1 \leq n$ or $k \leq$ $1/2(n-1)$. Before proving the theorem we make some observations about paths and the structure of the k-strong tournament T_{n} .

Three lemmas. The following result is obvious. $2.$

LEMMA 1. Let $\mathcal P$ denote an l-path from node u to node v. If node w is not contained in $\mathcal P$ and $u \to w$ and $w \to v$, then w can be inserted in the path to form an $(l + 1)$ -path from u to v; in particular w can be inserted immediately before the first node of \mathscr{P} it beats.

LEMMA 2. If u and v are any nodes of the top and bottom components of a weak tournament W_t and $1 \leq l \leq t-1$, then there exists an l-path in W_t that starts with u and ends with v ; furthermore, if $2 \leq l \leq t-1$ this path may be assumed to contain any given node belonging to any intermediate component of W_t .

This may be proved by applying the following observations to the components of W_i : If a tournament Z_k is strong and $0 \leq l \leq k-1$, then it contains a spanning cycle and, hence, each node is the first node, and the last node, of at least one *l*-path in Z_k ; and, if $R \to S$, then any c-path of R may be followed by any d-path of S to form a $(c+d+1)$ -path of $R+S$.

LEMMA 3. Let G denote any minimal subtournament of the k strong tournament T_n whose removal leaves a weak subtournament W of the form $W = Q + R + S$ where Q and S are strong and R may be empty; then each node of G loses to at least one node of S and beats at least one node of Q, and there are at least k arcs from nodes of G to nodes of Q and at least k arcs from nodes of S to nodes of G.

The conclusion in this lemma follows from the fact that G is minimal and T_n is k-strong. The existence of such a subtournament G will be shown before each application of this lemma.

We now proceed to the proof of Theorem 2; we have to use different arguments when l lies in different intervals.

Proof when $l = 3$. Let B and L denote the set of nodes $3.$ that beat and lose to p, respectively. Since T_n is k-strong B and L are nonempty and there are at least k arcs \overrightarrow{uv} that go from a node u of L to a node v of B. The theorem now follows when $l=3$ since each such \overrightarrow{uv} determines a different 3-cycle {p, u, v, p} containing p .

Proof when $l = 4$. If w is any node that beats p, let B, L, $4.$ M, and N denote the set of nodes that beat both w and p , lose to both w and p, beat w and lose to p, and lose to w and beat p, respectively. If $L = \phi$, then M must contain at least k nodes and N must contain at least $k-1$ nodes, since p and w must each beat at least k nodes. In this case there are at least $k(k-1) \geq k$ different 4-cycles of the type $\{p, u, w, v, p\}$ containing p, where $u \in M$ and $v \in$ *N*. We may suppose, therefore, that $L \neq \phi$.

There are at least k arcs of the type \overrightarrow{uv} where $u \in L$ and $v \in B \cup M \cup$ *N*. If $v \in B \cup M$, then the 4-cycle $\{p, u, v, w, p\}$ contains p. If $v \in N$ and v beats some other node y of N, then the 4-cycle $\{p, u, v, y, p\}$ contains p ; if there is no such node y but u loses to some other node z of L, then the 4-cycle $\{p, z, u, v, p\}$ contains p. Thus, there are at least k different 4-cycles containing p except, possibly, when there exists an arc \vec{uv} from L to N such that u beats the remaining nodes of L and v loses to the remaining nodes of N; there is at most one such arc \vec{uv} so in this case the preceding construction provides at least $k-1$ 4-cycles containing p.

If $z \in M$, then $\{p, z, w, v, p\}$ is a new 4-cycle containing p. Thus we may suppose that $M = \phi$; this implies L has at least k nodes since p beats at least k nodes. If there exists an arc \vec{z} where $z \neq$ $u, z \in L$, and $y \in B$ then $\{p, u, z, y, p\}$ is a new 4-cycle containing p. Thus we may suppose that u is the only node of L that beats any nodes of B. This implies, since T_n is k-strong, that there must be at least k arcs of the type \overrightarrow{zy} where $z \neq u$, $z \in L$, and $y \in N$. In this case, however, there are at least k 4-cycles of the type $\{p, u, z, y, p\}$ containing p. This completes the proof of the theorem when $l = 4$.

5. Proof when $5 \leq l \leq n-k+l$. Let $\mathcal C$ denote any $(l-2)$ cycle containing p ; such a cycle exists, either by virtue of an induction hypothesis or as a consequence of the result cited in the introduction. Let B and L denote the set of nodes that beat and lose to every node of \mathcal{C} , respectively, and let M denote the set of the remaining nodes of T_n that aren't in \mathcal{C} .

If $L \neq \phi$, there exist at least k arcs of the type \overrightarrow{uv} where $u \in L$ and $v \in B \cup M$. For each such node v there exists at least one node q of $\mathscr C$ such that $v \rightarrow q$. If we insert the nodes u and v immediately before q in $\mathcal C$ we obtain an *l*-cycle containing p; different arcs \overrightarrow{uv} clearly yield different l-cycles. A similar argument may be applied to B if $B \neq \phi$ so we may now assume that $L = B = \phi$ and $M \neq \phi$.

If $u \in M$, then there exists a pair of consecutive nodes r and s of \mathscr{C} such that $r \rightarrow u$ and $u \rightarrow s$. Thus u can be inserted between r and s in $\mathcal C$ to form an $(l-1)$ -cycle $\mathcal C_1$ containing p. Any other node v of M can now be inserted between some pair of consecutive nodes of \mathcal{C}_1 to form an *l*-cycle \mathcal{C}_2 containing p. Different cycles \mathcal{C}_2 are formed when different pairs of nodes of M are inserted in \mathcal{C} . Thus, there are at least ${n-(l-2) \choose 2} \geq {k+1 \choose 2} \geq k$ different *l*-cycles containing p when $5 \leq l \leq n - k + 1$. (This argument can be applied for somewhat larger values of l as well.)

6. Proof when $n - k + 2 \leq l \leq n - 1$. Let T_l denote any subtournament of T_n with l nodes that contains the node p. If T_i is strong, then it contains an *l*-cycle containing p , by Camion's theorem. Thus, if each such subtournament T_i is strong, then p is contained in at least $\binom{n-1}{l-1} \geq n-1 > k$ *l*-cycles in T_n .

We may suppose, therefore, that there exists a minimal subtournament G of T_n , with $g \leq n - l$ nodes, whose removal leaves a weak subtournament W containing node p . Then W can be expressed in the form $W = Q + R + S$ where Q and S are strong and R may be empty.

There are at least k arcs xq in T_n that go from a node x of G to a node q of Q , and for each such node x there exists at least one node s of S such that $s \rightarrow x$; this follows from Lemma 3. We shall show that for each such pair of nodes q and s, there exists an $(l -$ 2)-path $\mathscr P$ in W that starts with q, contains the node p, and ends with s.

If $p \in R$, then the existence of $\mathcal P$ follows immediately from Lemma 2 since W has $n-g$ nodes and $2 \le l-2 \le n-g-1$. If $p \in Q$, let \mathcal{P}_1 denote any spanning path of Q that starts with q. We observe that if Q has m nodes then $m \leq l-3$ since otherwise node s would lose to at least $l-2 \ge (n-k+2)-2 = n-k$ nodes and this is impossible since T_n is k-strong. Let \mathcal{P}_2 denote any $(l$ $m-2$ -path of $R+S$ that ends with s; the existence of \mathcal{P}_2 follows from Lemma 2 since $R + S$ has $n - g - m$ nodes and $1 \leq l - m 2 \leq n-g-m-1$. If $\mathcal{P} = \mathcal{P}_1 + \mathcal{P}_2$ then \mathcal{P} is an $(l-2)$ -path in W with the required properties and we can also find such a path when $p \in S$ by a similar argument.

This suffices to complete the proof when $n-k+2 \leq l \leq n-1$ since $\{x\} + \mathcal{P} + \{x\}$ is an *l*-cycle containing p and it is clear that different arcs \vec{qx} yield different *l*-cycles.

7. Proof when $l = n$; a special case. Since T_n is k-strong, there exists a partition of the nodes of T_n into two subsets A and B such that precisely k arcs go from nodes of A to nodes of B . At least one of these subsets has more than k nodes; if the nodes in this subset that are incident with the k arcs that go from A to removed, then the subtournament determined by the B are remaining nodes is weak. It follows, therefore, that there exists a smallest subtournament G , with at most k nodes, whose removal leaves a weak subtournament W of the form $W = Q + R + S$ where Q and S are strong and R may be empty. We may now apply Lemma 3 to T_{\ast} . There are at least k arcs that go from a node of G to a node of Q and we shall prove the case $l = n$ of the theorem. in general, by constructing a different *n*-cycle of T_n for each such arc; the node p plays no special role in this case since it automatically belongs to every *n*-cycle. First, however, we dispose of a special case.

Suppose R is empty and $Q = \{q\}$ so that $W = \{q\} + S$. Then G must have precisely k nodes all of which beat q for otherwise there wouldn't be k arcs going from G to Q . Consequently, S has $n-1-k \geq k$ nodes. There must be at least k nodes S that don't lose to all nodes of G for otherwise these nodes would determine a subtournament smaller than G whose removal from T_n would leave a weak subtournament.

Let s denote any node of S that beats some node x of G . **It** follows from Lemma 2, that there exists a spanning path \mathscr{P}_1 of W that starts with q and ends with s and a path \mathcal{P}_2 in G that starts with x and contains all nodes of G except those belonging to components of G that are above the component X that contains x . Hence, the cycle $\mathcal{C} = \mathcal{P}_2 + \mathcal{P}_1 + \{x\}$ contains all nodes of T_n except those nodes, if any, belonging to components of G above X . These nodes, however, can all be inserted in \mathcal{C} by Lemma 1, since they all beat x and lose to at least one node of S . The node s in the resulting *n*-cycle is the last node of S that occurs before the node q. Thus, in this way we can construct a different *n*-cycle for each of the at least k nodes of S that beat some nodes of G . Similarly, the theorem holds when $W = Q + S$ and S consists of a single node.

8. Proof when $l = n$; the general case. Let $\vec{x} \vec{q}$ denote any are that goes from a node x of G to a node q of Q in the tournament T_n . Next, let \overrightarrow{sy} denote any arc that goes from a node s of S to a node y of the top component of G ; if the component X of G containing x is the top component of G let y be the immediate successor of x in some fixed spanning cycle of X unless $X = \{x\}$ in which case let $y = x$. Finally, let $\mathcal{P}(q, s)$ denote some spanning path of W that starts with q and ends with s and let $\mathcal{P}(y, x)$ denote a path from

y to x in G that contains all the nodes in components of G that are not below x ; it is not difficult to see that these paths exist and that we may suppose q loses to the last node of Q other than itself that occurs in $\mathscr{P}(q, s)$.

Insert as many as possible of the nodes in the components of G below X between q and s in the path $\mathcal{P}(q, s)$ to form an augmented path $\mathcal{P}'(q, s)$ and let $\mathcal{P}(f, g)$ denote any spanning path, starting and ending with some nodes f and g, of the subtournament F determined by those nodes that can't be so inserted; it may be that $\mathcal{P}(f, g)$ is empty or consists of a single node. If t is any node of f, then (i) $t \rightarrow q$, (ii) $s \rightarrow t$, and (iii) $t \rightarrow u$, where u is the immediate successor of q in $\mathcal{P}'(q, s)$. The node t beats at least one node of Q and loses to at least one node of S; hence, by Lemma 1, it could be inserted in $\mathscr{P}'(q, s)$ unless (i) and (ii) hold. Since t doesn't beat itself or node x, and since there are at most $k-2$ other nodes of G, it must be that t beats at least one other node of W besides q if it is to beat at least k nodes altogether; this implies (iii) in view of Lemma 1.

If at least one node of the component of G immediately below X is in $\mathcal{P}'(q,s)$ or if X is the bottom component of G let

$$
\mathscr{C}=\mathscr{C}(x,q)=\{x\}+\mathscr{P}(f,\,g)+\mathscr{P}'(q,\,s)+\mathscr{P}(y,\,x).
$$

This is an *n*-cycle in view of the preceding remarks; we shall call it a type I cycle. The nodes s and q can be identified as the last node of S and the first node of Q encountered in traversing the cycle from any node of S to any node of Q . The node x can be identified as the last node between s and q in $\mathcal C$ that belongs to a component X of G with the property that no node of X or any component of G above X is between q and s in \mathcal{C} . Thus different arcs \vec{xq} determine different type I cycles, if they determine any at all.

Let us now suppose that X is not the bottom component of G and that no node of the component immediately below X belongs to $\mathcal{P}'(q, s)$. In this case we are unable to identify the node x used in defining the cycle $\mathcal{C}(x, q)$ so we must use a different construction.

Let $\mathcal{P}(u, v)$ denote the nonempty path such that $\mathcal{P}'(q, s) = \{q\}$ + $\mathscr{P}(u, v) + \{s\}$. Node x does not lose to itself or to the node f (which definitely exists in the present case), so it must lose to at least two nodes of $\mathcal{P}'(q, s)$ if it is to lose to at least k nodes altogether; but $x \rightarrow q$, so x must lose to at least one node of $\mathcal{P}(u, v)$. If t is any other node of $\mathcal{P}(u, x)$ then t does not lose to itself, its immediate successor in $\mathscr{S}(y, x)$, or to f; hence, t must lose to at least three nodes of $\mathcal{P}'(q, s)$ if it is to lose to k nodes altogether. It follows that every node of $\mathscr{P}(y, x)$ loses to at least one node of $\mathscr{P}(u, v)$.

If every node of $\mathcal{P}(y, x)$ beats v then these nodes can all be

inserted in the path $\mathscr{P}(u, v)$ to form an augmented path $\mathscr{P}'(u, v)$ by Lemma 1; this can be done in such a way that the nodes of $\mathcal{P}(y, x)$ occur in the same order in $\mathscr{P}'(u, v)$ as they do in $\mathscr{P}(y, x)$. In this case let

$$
\mathscr{C} = \mathscr{C}(x, q) = \mathscr{D}(f, g) + \{q\} + \mathscr{D}'(u, v) + \{s, f\}.
$$

That this is an *n*-cycle follows from properties (i) and (ii) of the nodes F , among other things; we shall call this a type II cycle. The nodes s and q can be identified in the same way as before. The node x can be identified as the last node between q and s that comes from G and beats f, the immediate successor of s in \mathscr{C} (we use the assumption about the nodes in the component of G containing f here). Thus, different arcs \vec{xq} determine different type II cycles, if they determine any at all. We can distinguish between cycles of types I and II because the node following s belongs to the top component of G in a type I cycle but not in a type II cycle.

If not all nodes of $\mathcal{P}(y, x)$ beat v, let w denote the first node of this path that loses to v. The nodes, if any, of $\mathscr{P}(y, x)$ that precede W can be inserted, as before, in $\mathscr{P}(u, v)$ to form an augmented path $\mathcal{P}'(u, v)$. If $\mathcal{P}(w, x)$ denotes the subpath determined by the remaining nodes of $\mathcal{P}(y, x)$, let

$$
\mathscr{C} = \mathscr{C}(x, q) = \{x, q, s, f\} + \mathscr{P}(f, g) + \mathscr{P}'(u, v) + \mathscr{P}(w, x).
$$

That this is an *n*-cycle follows from properties (i) and (iii) of the nodes of F ; we shall call this a type III cycle. There are at most two nodes of Q that are immediately followed by a node of S in \mathcal{C} . If there is only one such node then this node must be q, and if there are two then q is the node that loses to the other one. Thus we can identify the node q in $\mathcal C$ and x is the immediate predecessor of q. Hence, different arcs $x\overline{q}$ determine different type III cycles, if they determine any at all.

It remains to show that we can distinguish a type III cycle from a type I or II cycle. Some node of Q is followed immediately by a node of S in a type III cycle but not in a type I or II cycle when R , the subtournament determined by the intermediate components of W, is nonempty. Thus we may suppose that $W = Q + S$ where the strong components Q and S have at least three nodes each, in view of the case treated in $\S 7$. In this case, however, the first node of Q that occurs after a node of S is the same for all nodes of S in a type I or II cycle but not in a type III cycle.

Thus, in the general case, we can construct a different *n*-cycle $\mathcal{C}(x, q)$ corresponding to each arc \overrightarrow{xy} from a node of G to a node of Q. As there are at least k such arcs, this completes the proof of the

theorem.

REFERENCES

1. P. Camion, Chemins et circuits hamiltoniens des graphes complets, C. R. Acad. Sci. Paris, 249 (1959), 2151-2152.

2. J. W. Moon, Topics on Tournaments, New York: Holt, Rinehert, and Winston, 1968.

Received December 11, 1970 and in revised form April 27, 1971. The preparation of this paper was assisted by a grant from the National Research Council of Canada.

UNIVERSITY OF THE WEST INDIES UNIVERSITY OF CAPE TOWN and UNIVERSITY OF ALBERTA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305

C. R. HOBBY University of Washington Seattle, Washington 98105 **J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007**

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE^EDITORS

E. F. BECKENBACH

B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * * AMERICAN MATHEMATICAL SOCIETY

NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics Vol. 40, No. 1 September, 1972

