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Let M be a connected n-dimensional space form isometri-
cally immersed in a simply connected (2n-1)-dimensional space
form of strictly larger curvature. If M is minimal, it is
proven that it must be a piece of the flat Clifford torus in
the (2n-1)-sphere. If M is complete and simply connected, it
is proven that J possesses a global coordinate system whose
coordinate vectors are unit-length asymptotic vectors.

Introduction. A well-known theorem of David Hilbert states that
a complete two-dimensional riemannian manifold of constant negative
curvature cannot be isometrically immersed in three-dimensional eucli-
dean space [5], [7, p. 265]. There is reason to believe that the natural
generalization of Hilbert’s theorem to higher dimensions would be the
following conjecture: A complete n-dimensional riemannian manifold
of constant negative curvature cannot be isometrically immersed in
E',  If completeness is strengthened to compactness the conjecture
is known to be true by work of Chern, Kuiper, and Otsuki [6, vol.
2, p. 29].

The local problem of isometrically immersing a space form in a
space form was studied by Elie Cartan [3]. He used his theory of
exterior differential systems to show, among other things, that real
analytic n-dimensional submanifolds of constant negative curvature in
(2n-1)-dimensional euclidean space E*~' depend upon %(n-1) functions
of a single variable. Cartan also showed that no n-dimensional hyper-
bolic space form can be isometrically immersed in E**%. To construct
an explicit example, we choose nonzero real numbers a;, 1<i<n — 1,
so that >};a® =1, and we define an immersion from

D = {(yy Yoy *++, Yn) € R |y, < 0}

into E*»~' with rectangular cartesian coordinates wx, @, +++, %s_, by
the equations

Ty = a€"Co8(Ys/ay) ,
T = a;e¥nsin(y;/a;) , lsis=n-—1,
B = |0~ P
[1]
We find that the submanifold metric on D is of constant negative
curvature; however D is not complete in this metric.
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158 JOHN DOUGLAS MOORE

In §3 of this paper we prove that one of the main steps in the
proof of Hilbert’s theorem, the construction of a global coordinate
system whose coordinate vectors are unit-length asymptotic vectors,
can be generalized to the n-dimensional context. Our treatment is
based upon a theorem of Cartan, a proof of which is given in §1.
Section 2 is devoted to the local properties of space forms isometrically
immersed in space forms, and includes a rigidity theorem for minimal
submanifolds of constant curvature.

Unless otherwise stated all manifolds are connected and C=.

1. Exteriorly orthogonal symmetric bilinear forms. Let V be
an n-dimensional real vector space and let @', @*, --- @" be n symme-

tric bilinear forms on V. We say that @', ¢* ..., @" are exteriorly
orthogonal if

304X, Y)0(Z, W) — 04X, W)OHZ, V)] = 0
A=1
for X, Y, Z WeV.

THEOREM 1. (Elie Cartan [3]). Suppose that O, @, +-- 0" are
n exteriorly orthogonal symmetric bilinear forms on an n-dimensional
real vector space V with the following property: if X is a wvector in
V such that O*(X,Y) =0 for 1< A <n and for all YeV, then
X =0. Then there exists a real orthogonal matriz (a?) and n linear
Sunctionals @', P, -+, " such that

0t = > alpt Q@ P, 1sav=sn.

It follows that @', @2, ... @™ are simultaneously diagonalized with
respect to the basis dual to {®Y, @° ---, #*}. Theorem 1 is trivial
when » = 1 and when % = 2 it is a consequence of the following well-
known fact: two symmetric bilinear forms, one of which is positive
definite, can be simultaneously diagonalized.

We will find it convenient to regard @%as a linear transformation
from V to the dual space V* so that it induces a linear map

PN D VAV VEATVE,

Then @* A @ = 0 if and only if ¢* = + »* ® ®* for some linear funec-
tional @*. We can now restate Theorem 1 as follows: Suppose that
@', @ ... O™ are linear transformations from an n-dimensional real
vector space to its dual such that [@H(X)|Y) = [X()](X). If

Nker(@) = (0) and X0\ &' =0,
P

then there exists a real orthogonal matrix (a’) such that if
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U= al@*, then T AT =0 for 1N n.
A

The first step in the proof of Theorem 1 consists of showing that
there exists a vector X in V such that ¢'(X), 9*(X), ---, O*(X) are
linearly independent. We prove this by contradiction. If Xe V, let
U*(X) be the subspace of V* generated by {0*(X): 1 <X\ =< n} and
let p be the maximum dimension of U*(X) for Xe V. We assume
that p < n. If M is a vector for which the maximum dimension p
is attained, we can assume without loss of generality that

(M), ¢*(M), « -+, O*(M)
are linearly independent, and @**'(M) = --- =@"(M) =0. If Y is
any other vector in V, then

S, 0°(M) A 94(Y) = 0,

so that by Cartan’s lemma there exists a p X p symmetric matrix
(¢%) such that

(1) 0(Y) = 3 ci0n(M) l<a<p.

If we let W* be the subspace of V* generated by
{0(X): XeV, 12 a < p},

then (1) shows that W* is exactly p-dimensional. Since p < n there
exists a nonzero vector Z in V which is annihilated by W*. But by
hypothesis there exists N, 1 < » < n, and a vector Ne V such that
@NZ, N) + 0. Since Z is annihilated by W*, x=Zp+ 1. If e >0 is
sufficiently small, {@*[(cos &)M + (sin &)N] 1 < a < p} will generate
W* and @*[(cos &) M + (sin ¢)N] will be outside of W*. Hence

U*[(eos &) M + (sin g)N]

is at least (p + 1)-dimensional; this contradicts the definition of p,
and the first step is established.
Let {v, vy ++-, v,} b2 a basis for V such that

P'(vy), (v, + -+, D"(v)

are linearly independent. Then we can apply Cartan’s lemma to the
equation

2,04 (v) N @) =0

and conclude that there exists a symmetric matrix C(¢) = (¢(¢)7) such
that
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D*(w;) = 2 ¢(1)i P*(v,) l=x=n.
]

(Notice that C(1) is the identity matrix.) We next observe that it
follows from the equation

210 w) A P(v;) =0
that the matrices C(7) and C(j) commute with each other. By a
well-known theorem from linear algebra there exists an orthogonal
matrix A = (a?) such that A[C(7)]['A] is diagonal for 1 << n. If
we let ' = >, al @* then ¥v;) is a constant multiple of ¥*(v,) for
1 <1< n, so that

U w) A Tiv;) =0, 14,0 En.

It follows that ¥* A ¥* =0, 1 <\ < n, and Theorem 1 is proven.

An examination of the above proof shows that ¥*, ¥* ... ¥ are
uniquely determined up to a permutation. Hence the linear functionals
@', @*, ---, @" are uniquely determined up to changes of sign and a
possible permutation.

2. Submanifolds of constant curvature: local theory. In the
rest of this paper, our setup will be as follows: we will let M be an
n~-dimensional riemannian manifold of constant curvature k isometri-
cally immersed in a (2n — 1)-dimensional riemannian manifold N of
constant curvature K. We will use the following conventions on
ranges of indices:

1544,k n, n+l=nvus2n—-1, 14 B C=2n-1.

Let e, €, +--, €, ., be a moving oriented orthonormal frame on an
open set U in N, chosen so that at points of a suitable open subset
V of the submanifold M the first » frame vectors are tangent to
M. Let 6,6, -.-, 0" be the dual orthonormal coframe. A funda-
mental theorem of riemannian geometry states that there exists a
unique collection of 1-forms 64 on U which satisfy the structure

equation
(2) do4 = —S604 A 07, 04 = —07 .
B
The fact that N has constant curvature K is expressed by the equation
(3) dos = =304 N\ 65 + K04 A 65 .
Cc

If we restrict these equations to the open subset V of M and
make use of the fact that #* =0 on V, we obtain from (2) the
equations
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(4) Ao = —S 0, A 0%, 0= —5 0} A 6.
k k

The second of these implies via Cartan’s lemma that

(5) 0t = Z!béﬁ", b = b,
J

where the b},’s are differentiable functions on V called the components
of the second fundamental forms. From equation (3) we obtain the
equation

dgi = =300 N\ 0% — S 00 N 63+ KO' N 679 .
k 2
Since M is of constant curvature &
~;0§/\6§=(k—K)0i/\0“’,
or equivalently

(6) 2.0y — bhbis) = (b — K)(0idm — dudis) 5

where 0,;; is the usual Kronecker delta.
Assume now that k < K. Equation (6) then states that the
second fundamental forms @ = 3 6} ® ¢ and the symmetric bilinear

form

V=vE-FGOrRQ0

are exteriorly orthogonal, and Theorem 1 implies that they can be
simultaneously diagonalized by a basis for the tangent space to M.
Since the basis diagonalizes ¥ it can be chosen to be orthonormal,
and hence we can assume that the moving frame ¢, ¢, «--, €,_, chosen
in the preceding paragraphs satisfies the equations b, = 0 for 7 = j.
In view of the remark at the end of §1, any two diagonalizing
orthonormal bases differ at most by changes of sign and a possible
permutation. Hence if M is simply connected we can choose a global
moving frame e, ¢, ---, ¢, on M which diagonalizes the second funda-
mental forms. In particular, the universal covering space of M is
parallelizable.

In terms of the diagonalizing moving frame, equation (6) takes
the simpler form

(7) 2.buby; =k - K), i%#7.
A

We claim that it follows from this equation that there exist unique
positive functions z, ,, +--, 2, such that

(8) Sibhai =0and Ma;=1.
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Indeed, such functions need to satisfy the equation

0 =3, bjsbii = 35 b5,b5,45 — (K — k)1 — 27) ,

from which it follows that

(9) 2.bibl = (K — k)1 — ad)/ai .
We can solve for x; to obtain the expression

(10) o = [ (S owot) fx — 1 + 1]

and check that the functions defined by this equation satisfy equations
(8). A slight modification of this argument shows that any » — 1 of
the ‘‘principal normal curvature vectors’ 3);bke, are linearly inde-
pendent.

A restatement of what we proved in the preceding paragraph is
that there exist exactly 2" unit-length vectors on which all the second
fundamental forms vanish simultaneously. They are all of the form

(11) i 95191 i mzez i e i xnen b

where the signs can be chosen in 2" ways, and they are called
asymptotic vectors.

We remark that the normal bundle of M in N has zero curvature
because the curvature forms of the normal bundle are —3; 6} A 6%
and both 6} and @ are multiples of #. Hence without loss of genera-
lity we will assume that e,., «++, ¢,,_, have been chosen so that
0t = 0.

Our next objective is to find an expression for the differential
1-forms 6% in terms of the functions z;. For this purpose we will
use the tensor b};, defined by the following equation

(12) dbi; + 3 bis0, — 3 bi;0f — bL0F = Zbluo* .
y3

The exterior derivative of equation (5) shows that the tensor b}, is
symmetric in its lower indices. If we make use of the facts that
b}; =0 for i# 7 and 6% =0, we can simplify (12) and obtain the
equations

(13) abi; = 3 biut"
14) (b3 — biG; = S blud*, i g

If we choose ¢,,, at a point z€ M so that dy**(x) = --- = b1 (%) =0,
then it follows from equation (7) that
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bit(@) = (k — K)/b)"'(v) .

Equation (14) therefore implies that &};'(z) = 0 for ¢, j, 1 distinet. It
follows that bl (%) = 0 for 1,7, k distinct, and since the principal
normal curvature vectors span the normal space, b};,(x) = 0 for ¢, 7, k
distinct. Since z is arbitrary, equation (14) now becomes

We multiply this last equation by b} and sum with respeet to \
to conclude that

(b — K — 3, bibi)0; = 3 bibl, 0" + XL b5b,07, i3

We now need to use the following fact which is a conseguence of (9):
(15) 2 ; bibl; = (K — k)e,J(1 — af)/ai] -

We can use this to derive the following equation for the 1-forms 0::
0 = (1/x;)e;(x;)0° + (something)d’ .
Using skew-symmetry we conclude that
(16) 0; = (Um)e()0" — (1/z;)ew))0” .
As an application of these ideas we prove the following theorem

closely related to recent work of do Carmo and Wallach [2]:

THEOREM 2. Let M be a connected n-dimensional riemannian
manifold of constant curvature k isometrically and minimally tm-
mersed in a stmply connected (2n — l)-dimensional riemannian mant-
Jold N of constant curvature K. Then either M 1is totally geedesic or
it is flat. In the flat case it is tmmersed as a piece of the n-dimen-
sional Clifferd torus in the (2n — 1)-sphere.

The proof is local. The fact that the immersion is minimal is
expressed by the equation

(17 36 =0
which tcgether with equation (6) implies that
Zx‘ bibi, = (n — (K — k)djy, -

Hence k < K and if &k = K then the submanifold M is totally gecdesic.
Therefore we assume without loss of generality that k¥ < K.
In the case where &k < K we will actually prove a little more
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than the theorem states: if the hypothesis that M be minimal is
replaced by the weaker condition that its mean curvature vector be
parallel, it still follows that M is flat.

Since the normal moving frame vectors are parallel, the mean
curvature vector is parallel if and only if there exist constants ¢?
such that

b =c.
On the other hand, equations (13) and (7) imply that

Hence we conclude that

Zj b’?zﬁbgi = —ZI. bixck;bz?'i = lel b;&kbzu
! koti ki
= chzbéij - Zz. béibizi] = _Zf bfibfij .
It follows that 3;,b%4;04 = 0, and hence equation (15) implies that
ej(x;) = 0. Now by equation (16) the differential forms 6% vanish,
proving that M is flat.

To finish the proof of the theorem, we notice that if M is minimal
the principal normal curvature vectors (i.e., the b;’s) are determined
up to a rotation of e,,, +--, e,_, by equations (7) and (17). Since the
b)’s determine the 6]’s and #: = 0 = 6}, it follows from the classical
rigidity theorem [1, p. 202] that locally there is at most one minimal
flat n-dimensional submanifold of N, up to a rigid motion. Therefore
M must be a piece of the Clifford torus, and the theorem is proven.

3. The global existence of asymptotic coordinates. If M is
complete and simply connected, then any choice of signs in expression
(11) determines a globally defined unit-length asymptotic vector field
on M. If n unit-length asymptotic vector fields are linearly indepen-
dent at one point, they are linearly independent everywhere.

THEOREM 3. If M 1s a complete stmply connected riemannion
manifold of constant curvature k isometrically immersed in a (2n — 1)-
dimensional riemannian manifold N of constant curvature K >k,
then any n linearly independent unit-length asymptotic vector fields
Ziyy Loy + o, Z, determine a global coordinate system whose coordinate
vectors are the Z.'s.

First we establish local existence. Because of the theorem of
Frobenius, it suffices to show that the Lie bracket of any two asymp-
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totic vector fields is zero. But

Oi([xe5, Tren]) = e;(0°(wrer) — ien(0'(wie;)) — 2d0%(w5e5, Tres)
= x,e,(0°(wxe1)) — Tren(0(xs¢5)) + 2 Zlﬁf N O4xe5, ey

= 0u@se,(r) — 05;2581(X;) + 0:;mpe(w;) — 0uie;(2y)
=0.

In this derivation we have used equations (4) and (16). Since the
asymptotic vectors are sums of + z,e,;, local existence is proven.

To prove global existence, we let @,(x,t), xe M, te R be the
one-parameter group of transformations corresponding to Z;. Since Z;
is a vector field of unit length, it follows from the theory of ordinary
differential equations [4, p.15] that @,(z, t) is defined for all values
of x and ¢. Let x, be a fixed point in M and define a function F:
R"— M by

F(tla t27 R t’n) = @n(@n—1(' * '@2(¢1(a’50, tl)y tZ)y -t ')s tn) .

Since the Lie bracket [Z,;, Z,] vanishes, the one-parameter groups @;
and @; commute. Using this fact we can verify the following equa-
tion:

(18) F(SL =+ tly R tn) = @n(¢n~l(. ‘ '@1(F(Sly tt Sn)a tl)y i ‘), tn) .

We claim that F is a covering map. lLet « be a2 point in the
manifold M and let U, be an open neighborhocd of x on which local
asymptotic coordinates z, z, ---, 2, exist, and we can assume that
2(x) = z(x) = +++ = 2,(x) = 0. For ¢ >0, let

B;(x) = {ye U,: |2:(y)| < 0}

and choose ¢ so small that (z, 2, ---, 2,) give a diffeomorphism from
B,(x) onto an open ball of radius 2¢ in R*. Let Z,, ae A, be the
points in F~'(z), and let B;(%, denote the open ball of radius § around
%, To show that F is a covering map, it suffices to check the fol-
lowing facts:

1. F'|B.(%,) is a diffeomorphism from B..(Z,) onto B, (x) for a ¢ A.

2. B.%,) N B.%;) = ¢ if T, + Ty .

3. Fe F'(B.x)) = ¥ € B(%,) for some ac A.
To prove 1, we need only check that the local asymptotic coordinates
define an inverse to F'|B..(%,) using equation (18). 2 follows from 1,
and 3 follows from the fact that ¥ — ((F(¥)), +--, 2. (F(%))) goes to
xz under F.

Thus F' is a covering map, and since M is simply connected it is
a diffeomorphism. Therefore F defines a global coordinate system
whose coordinate vectors are the Z,’s and Theorem 3 is proven.
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A straightforward modification of the above proof establishes the
existence of ‘‘principal coordinates’”” whose coordinate vectors are
D101, Tolsy * v, X€,e

Since R is not a covering space for the =n-sphere when n > 1,
we obtain the positive curvature analogue of our conjecture:

COROLLARY. A complete n-dimensional riemannian manifold of
constant positive curvature k cannot be isometrically immersed in
a (2n — 1)-sphere of constant curvature K > k.

The corresponding local assertion is false, as Cartan proved in
[3]. An n-sphere of constant curvature can be isometrically immersed
in a (2n + 1)-sphere of constant curvature by first embedding it in
E~™ in the usual fashion, and then immersing E*"' in the (2n + 1)-
sphere as a flat torus.

If M is a complete simply connected space form as in Theorem
3, we will use the term ‘‘asymptotic surface’ to denote a complete
two-dimensional submanifold generated by two unit-length asymptotic
vector fields. Every asymptotic surface possesses a global Tchebychef
net ([7], p. 198) and it follows from the formula of Hazzidakkis that
the integral of the Gaussian curvature over any parallelogram of the
Tchebychef net is bounded in absolute value by 2r.
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