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Let Q be a topological ¢-manifold, let X be a compact
metric space, and let bQ and ¢ X denote the cones over @ and
X, respectively. A proper embedding f: aX — bQ (i.e., fla) =
b and f-{Q] = X) is unknotted if there is homeomorphism
h: bQ — bQ such that hf = f, where f is the conical extension
of f. In this paper it is proved that a proper embedding is
unknotted if and only if bQ — flaX] and bQ — flax] are of
the same homotopy type and the embedding f satisfies a local
flatness condition.

In this paper we present a topological analog to Lickorish’s
theorem concerning the PL unknotting of cones [7]. The PL result
states that if one embeds the cone over a complex into a ball (with
a codimension restriction) such that the base and only the base of
the cone sits in the boundary of the ball, then one can deform the
ball (without moving the boundary) so as to straighten out the cone.
The codimension requirement is that the dimension of the cone be at
least three less than the dimension of the ball.

We consider here a similar problem in the topological category
where the complex is replaced by a compact metric space and the
ball is replaced by the cone over a topological manifold. Homotopy
conditions are used instead of codimension, and, of course, some local
flatness condition is needed. This condition generalizes that property
for manifolds and is defined by using the inherent fibre structure of
the cone.

Our main theorem is then: An embedding of the cone over a
compact metric space into the cone over a compact topological mani-
fold is unknotted if and only if (1) certain homotopy properties are
satisfied and (2) the embedding is “locally flat.”

The proof of this theorem follows precisely the same outline as
the proof of the unknotting theorem by Price and Glaser (Theorem 1
of [4]), but uses topological engulfing in place of PL engulfing.

1. Definitions. Throughout this paper the term manifold will
be used in the topological sense. That is, a ¢-manifold Q is a separ-
able metric space in which each point has a closed neighborhood
homeomorphic to a g-cell. Let BdQ denote the boundary of @ and
IntQ the set Q-BdQ. The manifold @ is closed if it is compact and
without boundary. We let I denote the closed unit interval [0, 1]
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and I’ the half-open unit interval [0, 1). The symbol 1 will represent
the identity map.

Let @ be a compact g-manifold and let X be a compact metric
space. The cone over X, denoted aX, is the quotient space of X x I
obtained by pinching X x 1 to a point. We denote the point X x 1
by a and identify X with X x 0. X is called the base of the cone a X.

An embedding f: aX — bQ of the cone over X into the cone over
Q is proper if f(a) = b and f'[Q] = X. If f is a proper embedding,
let f: aX — bQ be the map defined by sending a to b, & to f(x) if xe
X, and by extending linearly over the line segments ax in ¢ X. Then
f is a homeomorphism of aX onto bf[X] < bQ and is called the conical
extension of f.

A proper embedding f: aX — bQ is unknotted or flat if there is
a homeomorphism #: bQ — bQ which is fixed on @ and such that if =
f. We say that f is locally flat at the point peaX if there is an
open set U in bQ containing f(p) and an embedding h: U — bQ such
that

(1) A{U] is a neighborhood of f(p),

(2) hflax] N R[U]] = U N flax] for each ze X,

3) if UNQ== @, then L] UNQ =1, and

(4) if U contains b, then h(b) = b.

The embedding f is locally flat if it is locally flat at each point of
aX — a (the reason for not requiring local flatness at the point a will
be apparent in the proof of the main theorem).

REMARK. An embedding f is locally flat at a point p = a if and
only if there exists an embedding A: I? x I— b@ such that

(1) A[I* x I] is a neighborhood of f(p) in 5@ and if pe X, then
h[I" x 0] is a neighborhood of f(p) in @, and

(2) for each be X, h'[flax] N R[I* x I]] = 2 x I for some zc I

Let X, be a compact subset of X and let f: aX - bQ be a proper
embedding. We say that f is an allowable embedding and write f:
(X, X;) — b(Q, BAQ) if f~'[b6BdQ] = aX,. That is, the cone over X,
(and nothing else) maps into the cone over BdQ. Note that f|aX;:
aX,— bBdQ is a proper embedding.

Now let N be a compact #-manifold, Y a compact metric space,
and ¢g: aY — bN a proper embedding. Then (N, Y, g) satisfies (*) or
(**), respectively, if

(*) the pair (ON — glaY], N — ¢g[Y]) is (n — 2)-connected, or

(**) b has arbitrarily small neighborhoods U in bN such that
the pair (BN — glaY], U — glaY]) is (n — 2)-connected.

An allowable locally flat embedding f: a(X, X)) — b(Q, BdQ) is said to
be simple if
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1) (@, X, f) satisfies (*) and (**), and

Note that if @ is a closed manifold, then only (1) is meaningful.

REMARK. The theorems to be proved here do not require the full
strength of (*) and (**). Kither (*) or (**) may be weakened by
replacing (n — 2) with 2.

2. Embeddings into cones over closed manifolds. In this
section let X be a compact metric space, @ a closed ¢-manifold, and
fiaX—bQ a proper embedding. To show that f is unknotted we
shall prove that the pairs (bQ — b, f[aX] — b) and (bQ — b, f[aX] — b)
are homeomorphic. This is accomplished by obtaining a collar of @
in 6@ in which the fibers of the collar and the fibers of the cone are
aligned and then by pushing the collar toward the cone point.

The existence of the desired type of collar follows by carefully
examining the proof of Brown’s local collaring theorem (Theorem 1
of [2]). One need only note that the procedure of piecing local collars
together can be accomplished without destroying the fiber preserving
property.

LemMA 1. If f: aX — bQ 1s a locally flat embedding, then there
1s an embedding h: Q x I'— bQ such that

1) Mz, 0) = a for each x€ Q and

@) hif(x) x I'l = R[Q x I' N flax] for each xe X.

The open subset U = A[Q x I’] of bQ, where h is an embedding
as in Lemma 1, is called a strong collar of (@, f{X]). If ¢t is a real
number, 0 < ¢ < 1, the subset A[Q x [0, ?)] is called a subcollar of U
and A[Q x [0, t]] is called a closed subcollar of U.

LEMMA 2. Let f:aX—bQ be a locally flat proper embedding,
let U be a stromg collar of (Q, fIX]), and let V be a subcollar of U.
If C is a compact subset of bQ mot containing b, then there is a
homeomorphism h: bQ — bQ such that

1) RVUb=1,

(2) hlflax]] = flax] for each xzc X, and

3) rUIDCN flaX].

Proof. Cover the set f[X] — V with finitely many open sets
granted by the definition of locally flat and then push U up toward
the cone point by sliding it through these open sets.
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LemMmA 3. If f:aX—0bQ, g=4, is a sitmple embedding, then
bQ — b is a strong collar of the pair (Q, fIX]).

Proof. Let U be a strong collar of (@, fIX]), let 9: @ x I' — bQ
be the defining embedding for U, and for each 7 =1,2, .-- let U; =
glM x [0, ¢/( + 1))]. Let V, V, --- be a monotone decreasing se-
quence of open subsets of bQ which squeeze down on the point b and
such that the pair (bQ — flaX], V; — flaX]) is (¢ — 2)-connected for
eacht=1,2 +-.. Let D,=bQ — V..

We construct a sequence of homeomorphisms #,, h,, -+ such that

(@ mle=1

(b) h{U,]JD D, for each ¢t =1,2, ---,

(c) h|U,_,=h;_,|U,_, for each ¢ =2,3, ---, and

d) hJflax]] = flax] for each ¢ = 1,2, ---.

By induction assume that &, ---, h;_, have been chosen and apply
Lemma 2, with C replaced by D, and V replaced by &, [U,_}, to
obtain a homeomorphism %’ satisfying the conclusions (1) and (2) of
Lemma 2 and such that #'h,_JU;) 2> D;N fleX]. Then employ the
topological engulfing methods of Connell [3] and Newman [8]. The
homotopy conditions on (bQ — f[aX], @ — f[X]) and (BQ — fleX],
V; — flaX]) are sufficient to apply the proof of Theorem 1 of [3] to
obtain a homeomorphism #4”: bQ — flaX]— bQ — flaX] such that
R'Wh,_JU] D D,. It is easily seen that & can be defined so as not
to move points outside a compact set and therefore can be extended
by the identity on f[aX]. Then the homeomorphism #; = A”"k'h;_,
completes the induction argument.

Finally, set o = lim A;|U. Then h is a homeomorphism from U
onto bQ — b which preserves the alignment between the fibers of U
and f[eX] and hence bQ — b is a strong collar of (Q, f[X]).

The following proposition is essentially a corollary of the previous
lemma.

ProrosiTION 1. If f:aX—0Q,q9 =4, is a simple embedding,
then there is a homeomorphism h: bQ — bQ which is fixed on @ and
such that hlflax]] = flax] for each xze X.

LEMMA 4. Let Y be a compact metric space and let X be a
compact subset of Y. Suppose f: X x I—Y x I is an embedding
such that f|X x{0,1} =1 and flx x I] = x I for each xc X. Then
there is a homeomorphism h: Y x I— Y x I such that

1 RrlYx{01} =1,

(2) hly x Il =y x I for each yc Y, and

8 hf =1.
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Proof. Let p,: Y x I—1 denote the projection on the second
factor and let ¢, be some fixed real number, 0 < ¢, < 1. Then p,f:
X x t,—1 is a continuous map and p,f[X x t,] < (0, 1). By the Tietze
extension theorem there is a map »: Y x ¢, — (0, 1) which extends
2f X x t,. Define amap g: Y x t,— Y x I by g(y, t.) = (y, p(Y, t,)).
Then g embeds Y x ¢, into Y x I, extends f|X X ¢, and has the
property that g(y, t) ey x (0, 1) for each ye Y.

Now define a map h: Y x I— Y x I by

(y,l—‘—j"(it—%—to)w(y,to))iftogt§1

— 1_to

h(y, t) =
(y,%t)ifOétgto.
\ 0

Then % is a homeomorphism and satisfies (1) and (2). If we set »’ =
k7', then &' satisfies (1) and (2) and h'g(y, t,) = (¥, &) for each ye Y.
In particular, 2'f(z, t,) = h'g(z, t) = (x, t,) for each xe X.

The desired homeomorphism is now constructed as the limit of a
sequence of homeomorphisms obtained by applying the above construc-
tion as t, varies over the dyadic rationals in I. Let g: Y X I— Y x I be
the homeomorphism &’ constructed above for ¢, = 1/2. Let ¢g;: Y x [0, 1/2]
—Y x[0,1/2] and ¢): Y x [1/2,1] — Y x [1/2,1] be homeomorphisms
constructed as above for ¢, = 1/4,¢ = 3/4 and the embedding g, f,
respectively. Combining ¢, and ¢} at Y x 1/2, we obtain a homeo-
morphism ¢,: ¥ X I— Y x I such that

(@) ¢.]Y xk/2=1 for each £ = 0,1, and 2,

b)  g9.f(x, k/4) = (x, k/4) for each € X and k£ =0, 1, 2, 3, and 4,
and

(¢) if (y,t)e Y x [(k — 1)/2, k/2], then

g:(y, Ve y x [(k — 1)/2, k/2] for each k£ =1 and 2.

Continuing this procedure for all the diadic rationals in I, we
obtain a sequence g¢,, ¢, ¢s, - -+ such that

(d ¢.,]Y x k/2~* =1 for each £ =0,1, ---, 27,

€ g, 9.f(® k2% = (z, k/2") for each xe X and £ =0,1, -+,
2", and

() if (y, e Y x [(k — 1)/2»7, k/27], then g.(y, ) ey X [(k — 1)/
2t /2] for each k=1, 2, ---, 2",

For each n=1,2 ---,1et h,=g¢,---9,. Then h=Ilim#, is a
homeomorphism and satisfies the desired conclusions.

In terms of cones, the previous lemma becomes

PROPOSITION 2. Let Y be a compact metric space and let X be a
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compact subset of Y. Suppose f: aX—aY is an embedding such that
f1XUa =1 and flax] = ax for each x€ X. Then there is a homeo-
morphism h: aY — aY such that

(1) hlYUe=1,

(2) hRlay] = ay for each ye Y, and

3) af=1.

We are now in a position to prove the unknotting theorem for
closed manifolds. Proposition 1 indicates that the embedded cone can
be pushed onto the straight cone in such a way that the corresponding
fibers are aligned and then Proposition 2 shows that these fibers can
be matched in a pointwise fashion.

THEOREM 1. An eMbedding fiaX—0bQ, g =4, is unknotted if
and only if it is simple.

Proof. The “only if” part is trivial. Suppose then that f is
simple and let %;: bQ - bQ be the homeomorphism granted by Pro-
position 1; that is #,|Q U b = 1 and &,[f[ax]] = flax] for each e X.
Then A, ff": bf[X] — bf[X] C bQ is an embedding satisfying the hypo-
theses of Proposition 2 (recall that f is the conical extension of f)
and therefore there is a homeomorphism #,: 5Q — bQ such that z,[|Q U
b =1, hfby] = by for each ye Q, and hh ff* =1. Then h = hyh, is
the homeomorphism which unknots f.

If Y is a topological space, an ambient isotopy of Y is a level
preserving homeomorphism H: Y x I— Y x I such that H|Y x 0 =
1. The statement that H is fixed on a subset A of Y means that
H|A x I=1.

COROLLARY 1. If f:aX—bQ, ¢ = 4, is a simple embedding, then
there is an ambient isotopy H of bQ which is fized on Q U b and such
that Hf = f. Moreover, if X, is a compact subset of X and f|aX, =
flaX,, then H may be chosen so as to be fized on flaX,].

Proof. Let h: bQ — bQ be a homeomorphism which unknots f.
Define H: bQ x I—bQ x I by letting it equal the identity on (bQ x
OU(QUDb x I] and k on bQ x 1. Then extend to all of bQ x I by
coning over the point (b, 1/2).

COROLLARY 2. Let f: aM—bQ,q =4, be a proper embedding
where M is a compact manifold. Suppose the pair (bQ — flaM], @ —
SFIM]) is (@ — 2)-connected and suppose b has arbitrarily small neighbor-
hoods U in bQ such that the pair (bQ — flaM], U — flaM]) is (¢ —
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2)-connected. If flaM — a] is a locally flat submanifold of bQ — b,
then f is unknotted.

Proof. It need only be shown that f is locally flat in the sense
defined above. But this follows trivially from the fact that any
locally flat embedding (in the manifold sense) of the k-cell D* into
E" extends to a homeomorphism of E™.

3. Emkeddings into cones over manifolds with boundary. In
this section we extend the unknotting theorem to include manifolds
with possibly nonempty boundary. The proof is essentially the same
as that of Theorem 1 and we therefore only indicate in what order the
various engulfing stages are to be done.

THEOREM 2. An allowable embedding f: a(X, X,) — b(Q, BdQ), ¢ =
5, is unknotted if and only if it is simple. Moreover, if f has the
property that flaX, = flaX,, then the unknotting homeomorphism
may be chosen so that it is the identity on bBAQ.

Proof. Let D be a compact subset of bQ — b. As in Lemmas 1
and 2 there is a strong collar U = A[Q x I'l of (Q, f[X]) con-
taining D N flax]. In addition, U can be selected so that A [bBdQ] =
BdQ x I'.

Now consider U N bBdQ. TUsing properties (*) and (**) with re-
spect to (BdQ, X,, f|X,), and the engulfing theorem of Connell [3]
and Newman [8], U N bBdQ can be pushed (in bBdQ) toward b to
cover D N bBdQ. Since this engulfing homeomorphism is actually
realized by an ambient isotopy of bBdQ, it can be extended to bQ
without moving f[eX]. Thus we may assume that U N bBdQ contains
D N bBAQ.

Applying the engulfing theorem again, this time using (*) and
(**) with repect to (@, X, f), the collar U can be pushed toward b
until it containg all of D. This is the necessary condition needed
to complete the proof of Lemma 3 in this case and hence the first
part of the theorem is proved.

Now suppose f|aX, = f|aX, and let 2 be an unknotting homeo-
moerphism. We need to adjust 2 so that %|bBdQ is the identity. By
applying Corollary 1 to 2|bBd@, there is an ambient isotopy H which
realizes h|bBdQ and is fixed on f[aX;] and BdQ Ub. Then H can be
used in conjunction with the cone over a collar of BdQ — f[X,] in
Q — f[X] to obtain a homeomorphism A': b@Q — bQ which is fixed on
flaX] and Q U b and such that A’2|bBdQ is the identity. Then »'h
is the desired unknotting homeomorphism.
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