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In his "Lectures on Invariant Subspaces", H. Helson has
divided the study of the (closed) invariant subspaces of a
unilateral shift of countable multiplicity N (regarded as the
multiplication by z on Hi, the Hz Hardy class of analytic
functions in the unit disc D = {z: \z\ < 1} with values in a
complex separable Hubert space K of dimension N) into two
main sections: "Full-range subspaces" and "Analytic Range
Functions".

An invariant subspace ^& is a full-range subspace if it
can be written as ^£ = UH2

K, where U is an INNER FUNC-
TION-OPERATOR, i.e, U(z) is a bounded analytic function on
D with values in the set of all bounded linear operators in
K whose nontangential strong limits U(eix) (these limits are
well-defined a.e.) are unitary operators in K (a.e). Helson's
book contains a study of the analytic properties of an inner
function operator in the interior and on the boundary of D.
In this article the properties of the analytic continuation of
these functions outside D are studied; the results also include
some information about the cyclic vectors of a CΌo-contraction
in a Hubert space.

Let us state carefully the definitions that we are going to use

Let F{z) be an analytic function, originally defined on D, with

values in the complex Banach space . ^ the "analyticity" and the

domain of analyticity (or, the Riemann surface) R(F) of F is defined

"via Taylor series" with coefficients in & converging absolutely in

The Riemann surface R(A) of an analytic function with values in

the set £f(&) of all bounded linear operators in & (A will be

assumed originally defined on D) is also defined via Taylor series with

coefficients in Sf{^), converging absolutely in the norm as operators

in &.

As it will be shown in the next section, these conditions can be

relaxed.

Let ( , •) and || \\κ denote the inner product and the norm of K,

respectively, and let

F(z) = Σ iM , G(z) - Σ ?.*•(*., f. e K)

be two elements of Hi; then the non-tangential limits F{eix), G(eix)
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are well defined for a.e., eixedD (the boundary of D) and the inner
product of F and G can be expressed as

(0.1) <F, G> = Σ fa, £•) - ί W β ) , G(βίa!))dm
Λ = 0 J9Z>

= normalized Lebesgue measure on 3D).

The shift operator S on H2

K and its adjoint S* are defined by

&F(z) - zF(z) = Σ ψ«w+ι

SΨ(z) = [F{z) - F(0)]/z = £ V-.+.2"

We shall denote by ^ (^", resp.) the set of all full-range
invariant subspaces (inner function-operators, resp.). Let ^ = UH2

K e
J^~. U(e^) is uniquely determined by ^-//, up to a constant
unitary right factor (see [4], Lect. VI). The subspace 3ίΓ = ^ L is
clearly invariant under S* and the operator T: St~ —> SΓ defined by

(0.2) TF = P(SF)

where P denotes the orthogonal projection of H2

K onto J%~ is a Coo-
contraction in the sense of Sz.-Nagy and Foias; moreover, every Coo-
contraction can be actually represented in this form (see [6], [8]).

The following result is contained in [4], Lect. VII (see also [8],
Chap. VI).

THEOREM 1. Let ^ = UH2

K(UejT) and let ^T = ΛTL. Then:
( i ) The spectrum σ(T) of T (defined by (0.2)) consists of exactly

those complex numbers λ e D such that U(X) is not invertible in K,
and those λ e dD such that U(z) cannot be continued analytically to
z = λ.

(ii) If XedD, then Xgσ(T) if and only if all the functions of
3ί^ can be continued analytically across dD at z = λ.

(iii) Furthermore, if R{U) is the domain of analyticity of U(z),
then F(z) can be continued analytically to R(U), for all Fe^Γ, and

In the first part of this article we analyze some problems related
to the analytic continuation of analytic functions with values in a
Banach space.

Using these results, the statements of Theorem 1 are improved
in several ways (§§2 and 3).

§4 contains a necessary condition for a function Fe Jyι~ to be a
cyclic vector for f ( Γ a Coo operator), in terms of its analytic con-
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tinuation outside D.
Following M. J. Sherman [7] we shall say that the (not necessarily

full-range) invariant subspace Λ? c H\ contains the direction of F e
HK if fFe^f, for some nonidentically zero scalar function /.

If g i ϊ l c ^ ^ , for some inner function q, then ^// is called an
IN-subspace; ^y£ clearly contains all directions and it is actually true
that ^ f e ^ .

Let (IN)~((IN), resp.) be the set of all /i\Γ-subspaces (liV-operators,
i.e., those Ue &~ such that UH% is a /N-subspace, resp.; see [5], [6]).
Then we have the following result:

PROPOSITION 2. ([5], Chap. I; [7]).
(i) Let ^//S = UH^e (IN)~; then there exists an inner function

q such that: rH2

K c Λ? (r an inner function) if and only if re qH°°
(i.e., if and only if q divides r).

(ii) Similarly, if , # * is an invariant suhspace containing the
direction of FeH2

K, then there exists an inner function p such that
V and f e H~, fFe^ί^ ==> f e pH°°.

The function q of (i) is the minimal inner function (mif) of ^£
(or U); the function p of (ii) is the minimal inner function of F with
respect to ^T {"p is the mif(^Γ) of F"). In §5 we shall study the
behavior of p in connection with Λ" and the relation between q, U
and T; in particular, we shall give a new proof of the following
theorem (see [1]; [3]; [5], Chap. V; [8], Chap. VI).

THEOREM 3. Let Ue (IN) and let q be its mif. Then:
( i ) The domain of analyticity of U(z) (ί/"1^), resp.) is the same

as the domain of analyticity of q(z) (g"1^), resp.); moreover, U and q
(U~ι and q~\ resp.) have the same kind of isolated singularities.

(ii) In particular, the set D Π σ(T) (T defined by (0.2)) is precisely
the set of all zeroes of q(z) and it agrees with the point spectrum of T.

(iii) If R(q) is strictly larger than D and zeR(q), \z\ > 1, then

(0.3) \\U{z)\\κ^\q{z)\.

(iv) Moreover, if I — U*(z)U(z) has finite trace for some zeD,
then the same result is true for all ze R(U) and trace norm [I —
U*(z)U(z)] is uniformly bounded on compact subsets of R(U).

Most of the material of this article is contained in the author's
thesis ([5], Chap. V).

!• The proofs of Lemma 4, Theorem 5 and Corollary 6 are due to
Richard W. Beals. In what follows ^ * denotes the (topological) dual
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of the Banach space &.

LEMMA 4. Let

(1.1) F(z) = Σ>ψnz
n,ψne^

be an analytic &-valued function defined on D (i.e., the series con-
verges absolutely in &, for all ze D) and assume that, for each ξ e
&*, the scalar analytic function [F(z), ξ] = ξ(F(z)), can be continued
to an analytic function on the open disc Dξ — {z: \z\ < 1 + ε(f)}(ε(f)>0).

Then there exists an ε > 0 such that the Taylor series (1.1) con-
verges absolutely in & for all z, \z\ < 1 + ε; i.e., F(z) can be continued
to an analytic &-valued function on the open disc of radius (1 + ε).

Proof. By hypothesis, we have
(1) lim. sup \\ψn\\:^£l,

(2) lim, sup \ξ(Ψn)\lln ^ (1 + e(£))Λ for each ξe £$*.
Let έ%*N = {ξ e έ%*: \ξ(ψn) | ^ (1 + 1/iSΓ)-, n = 0,1, 2, . . . } .
For each N, N = 1, 2, - ^ / is a closed subset of ^ * and ^ * =

U^=I^ΛΓ* Moreover, ̂ / is clearly convex and equilibrated (i.e., λ e
3D, ξ e ^ / ==> Xξ e &%).

According to Baire category theorem, there exists an N such that
&/ has nonempty interior; using this fact and the above observations
about ^ / , we conclude that there exist an integer No and δ > 0 such
that

Let ί e ^ * , HflU* - 1; it follows that \ξ(ψn)\ ^ (1 + l/N0)-%/δ,
n = 0, 1, 2, , and therefore

Thus the statement is true for ε = 1/NO > 0.

THEOREM 5. Let R be an open subset of the Riemann sphere
C = CU{°°} (or, more generally, a Riemann surface) and let έ%f^ be
a subset of the space £ίf of all B-valued functions defined on R.
Assume that:

(1) Sίf^ is convex and closed in the compact-open topology of £ίf,
and

(2) There exist a countable dense subset {zn} of dR and a family
{Fn G ^ } such that zn £ R{Fn), for n = 1,2, ---.
Then: (i) There exists a function Fo e ^ such that R(F0) = R.

(ii) Moreover, there also exists ξe &* such that
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Proof. For F, G e βgf, define

d l F c) = f 2-k sup{llF(a) - G{z)\\^\ zeMk}
K ' } fei [1 + sup{||F(z) - G(z)|U: zeMk}] '

where {Mk}f=1 is a sequence of compact subsets of R such that R =
[jkMk. As it is well-known, d is a metric on ^f and, moreover,
{Sίfi d) is a complete metric space (hence it is a Frechet space) whose
topology coincides with the compact-open topology. Hence {Sίf^ d) is
a complete metric space

(i) Let {zn} be as above and set <%^,m,N = { F G <%%: F extends to
an analytic ^-va lued function on Dllm(zn) = {z: \zn — z\ < 1/m}, and
\\F(z)\\*£N on A/J.

Then J^,m)iVr is closed in βgf0.
Let FG^gt,TO,^ and let Fn be the function of the statement cor-

responding to zn. Then
F = lim (1 — e)jP + eFn = lim.( Fε/ as s —• 0 (in the metric cϋ) and

Fte §ίfn,m,N for any ε > 0; i.e., J ^ , w , ^ is nowhere dense in Jg^. It
follows from the Baire category theorem that

is dense in ^ . Thus, i£Foe£fi', then

i2(JP0) n 3i? = iJt^o) Π closure {̂ %} = 0 .

(ii) Let Fo be as above and consider the set

" = {[F0(z), £]: ί € ^ *

f is a convex subset of the space of all scalar analytic functions
on R = U?(JF0) Assume that {£/}jU is a sequence in the closed unit
ball of ^ * such that

lim. [F0(z), ίy] = fo(z), as y-> oo ,

uniformly on compact subsets of R. Passing if necessary to a subse-
quence, we can assume that ξd converges in the weak*-topology to
some element ξQe &*. Clearly we have | |? 0 |U* ^ 1 and fo(z) = [FQ(z)>
ξQ]. Hence §^tf is closed and therefore it satisfies the Condition (1)
of the statement.

By Lemma 4, we can see that Sί?" also satisfies the Condition
(2). Now the result follows from (i).
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The metric d can be replaced by any metric p such that the
identity map ( ^ , p) —> ( ^ , d) and the maps [0, 1] —> Jgt (defined by
r —> (1 — r)F + rG, where F, G are two fixed elements of 3(f$ are
continuous. A different kind of modification is used in the following

COROLLARY 6.1 Let A(z) be an analytic function defined on the
Eiemann surface R = R{A) with values in the set of all bounded linear
operators in &. Then there exist ψe & and ξ e <&* such that R —
R([A(z)ψ, ξ]).

Moreover, ψ and ξ can be chosen so that, if λ is an isolated point
of dR, then λ is a pole of order N for A(z) if and only if it is a pole
of order N for [A(z)ψ, ξ].

Proof. Let & = & x ^ * ; & is a Banach space with respect to
the norm ||(f, ί) |U = IITHU + ll£!U* Observe that ||A(s)|U is uni-
formly bounded on compact subsets of R; hence the map (φ, ξ) —>
[A(z)ψ, ξ] is continuous from & into the space of all scalar analytic
functions on R (compact-open topology).

Let Jg^ = {[A(z)φ, ξ]: \\ (φ, ί) |U ^ 1}. We are going to prove that
this set of functions satisfies the Condition (2) of Theorem 5; this will
follow by the same argument as Lemma 4.

Assume that A(z) = Σί=o-4n«nι where {.AJ~=0 is a sequence of
bounded linear operators in & such that limn. sup. ||An||i£

n ^ 1, and
that R([A(z)ψ, ξ]) includes a disc of radius 1 + ε(φ, ξ) (ε(ψ, ξ) > 0) about
2 = 0, for each pair (φ, ξ) e ̂ . Applying Lemma 4 to the ^-valued
functions [A(z)ψ], ψe &, it follows that A(z)ψ can be continued to an
analytic ^-valued function on the disc of radius 1 + ε'(ψ)(ε'(φ) > 0).

Let ^ - ( f e ^ : \\Anψ\U ^ (1 + l/N)~\ n = 0, 1, 2, . •}.
Now the proof that limw. sup. \\An\\%n^{l + l/ΛΓo)"1 for some

integer No > 0, follows as in Lemma 4. Therefore, A(z) can be con-
tinued analytically to any domain on which all the functions in Jg^ are
analytic. This proves that ^ satisfies the Condition (2) of Theorem 5.

Let {zn}~^(zdR, {fn(z) = [A(z)fn, ξn)}c:^f and Sίfn.m,N be defined
as in Theorem 5. Define &1 = {(φ, ξ): \\(ψ, f ) | U ^ 1} and

&»,*.* = {(Ψ, ξ)*Bl' [Λ(z)ψ, ξ] e £K,m,N) .

&n,m,N is clearly closed in the closed unit ball &ι of ̂ ? .
Observe that if f(z) = [A(z)φ, ξ] (where (ψ, ξ) e &ι), then for each

ε, 0 < ε < 1, the functions fεΛ(z) = f(z), ftΛ{z) = [A(z)((l - e)ψ + εψ%),
f], fzM = [A(z)ψ, (1 - e)ξ + eξn] and fε4(z) = [A(z)((l - e)ψ + ef.),
(1 - ε)ξ 4- εζn] belong to

1 The author wants to thank Prof. H. Helson for finding a mistake in the proof of
this corollary.
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Since f(z) = lim. ftt3 (z), as ε —>0 (in the metric d; for j = 1,2, 3, 4)
and, for at least one value of j, fifi is not analytic at z = zn for
sufficiently small ε, we conclude that &n,m,N is nowhere dense in ^g1.
It follows as in Theorem 5 that ^ = ^ — (J~ «,^=i^n,«,iv is dense in
^ \ Thus we have # = R(A) = i2([A(s)t, f]) for all pairs (ψ, f) e ^ .

Finally, if zQ is apole of order N for A(z), then the set of pairs
(ψ, ξ) e &1 such that (z — zy~ι[A{z)ψ, ξ] is regular at z = ^0 is closed
and nowhere dense in ^g*1. Since A(z) has only countably many
singularities, the last statement follows by a refinement of the pre-
vious argument.

REMARK. We have actually proved stronger results. In fact we
have:

(a) If F(z) is an analytic function with values in &, then

R{F(z)) - R([F(z), ξ]) ,

for all £ e < ^ * " , where ^ * " is a Ga-dense subset of ^ * .
(b) Similarly, if A(z) is an analytic function with values in £f(&),

then

R{A(z)) = Λ([A(«)t, 51) ,

for all (ψ,ξ)e&"x&*", where &" and ^ * / ; are Gδ-dense subsets
of & and ^ * , respectively.

2* Let 2;—>2;* be the "symmetry" of C that fixes 3D) i.e., 0* =
co; co* = 0; z* = z. \z\~2, for z Φ 0, ©o.

To every set RaC, let J?* = {z: z* e R}. If R is open and /(s)
is analytic on R, then f*(z) — /(«*) is analytic on jβ* The next
lemma is a version for operators of the classical reflection principle
for scalar functions:

LEMMA 7. Let Ω aC be an open disc ivhose boundary dΩ intersects
3D orthogonally. Assume that A(z) is an analytic function defined
on D Π Ω whose values are bounded linear operators in K, such that
11-4(2)11* is uniformly bounded there. Then:

(i) A{z) has nontangential strong limits as z approaches Γ =
3D Π Ω from the interior of D Π Ω, for almost every point of Γ.

(ii) Furthermore, if these limit values are unitary operators in
K (a.e., on Γ) and H A " 1 ^ ) ^ is also uniformly bounded on D 0 Ω,
then A(z) can be continued analytically to the domain Ω, by means
of the formula

A(z) = μ y ^ ^ F n β .
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Proof, (i) The boundary of D Π Ω consists of two arcs of circle,
so that if rj\ D Π Ω —> D is a conformal mapping, then η can be ex-
tended to a continuous and one-to-one map from Ώ = closure (D Π Ω)
onto D U 3D; this extended η is analytic and conformal on Ω, except at
exactly two points on the boundary (the extreme points of Γ) and it
maps sets of positive linear measure on dΩ onto sets of positive linear
measure on 3D. Moreover, rj"1 has the same properties.

By ([8], Chap. V-2) A{η~\z)) has nontangential strong limits a.e.
Thus (i) follows from the properties of η.

(ii) Assume that \\A(z)\\κ < M, \\A~ι{z)\\κ < M, for all zeDΠΩ.
A^iz) is clearly analytic on D Π Ω; let φ, ψeK; the function fφψ(z) =
(A~ί(z)φ, ψ) is analytic on that domain, and this implies that:

is analytic in z, for 2G(ΰnfl)* = ΰ * n i 3 . Therefore [A*(2*)]H is
analytic in z, for 26β*ίlfl.

Let /(«) = f(reix) = fφΨ(z), ze Df)Ω, be defined as above, and let
0(r-V*) = ([A*(reίa;)]-V, ^) If Γ' is a closed subarc of Γ, then reίίC e β
for all eίx e Γ' and all r, r0 < r < 1. Since A(βίίC) is unitary a.e., we have

^ ) - (/β* ) I2

+ { J r I /(βίfl5) - g(r-ιeix) |2 dm} 1 ' 2 -> 0, as r — 1 .

By a well known result, and using the fact that Γr can be arbi-
trarily chosen, this implies that the functions / and g continue each
other across Γ to determine an analytic function on the domain Ω.

Since this result holds for every pair of vectors φ, ψeK, it follows
from Corollary 6 that A(z) — [A*^*)]"1 is the analytic continuation of
A(z) across Γ, to the domain Ω, and it is clear that ||A(z)||^ < ikf on Ω.

REMARK. It is not hard to see that the boundedness of A~ι(z)
near Γ is also a necessary condition for the analytic continuation of
A(z) in the conditions of the lemma. We can say more than that:
assume that / e H°°, f(z) Φ 0 on D, and \f(rzix) I'1 = 0 (exp. {11 - s|-*}),
t < 1; then f(z) is an outer function ([4], Lect. IV) and therefore,
if Ue^~, from ll/φZT-'φlU: ̂  M, for zeD, z in a. neighborhood of
1, we conclude that || U~ί(z)\\κ ^ M', in the same neighborhood. That
is,



ANALYTIC CONTINUATION OF INNER FUNCTION-OPERATORS 335

in the neighborhood (in D) of a singularity of U(z) at the boundary
of D.

The trivial example U(z) — exp.{(z + ί)/(z — 1)} I shows that the
above result is false for t = 1.

From Theorem 1 and Lemma 7 we get

THEOREM 8 Let Uej^; then R(U) is the component containing
the origin of the set

C'\{z: z~ι e σ(T*)} .

In particular, R(U)cC' and U(z) = [U*{z*)\-\ for all zeR(U) ΓΊ

D*.

REMARKS,

(a) R(U) contains the open circle of radius || T\\τi (||. \\SP denotes
the spectral radius).

(b) If

(3.1) q = δ.r is an inner function ,

(3.2) b(z) = Πk{(Xk/\\k\) (\k-z)/(l-Xkz)}

is t h e Blaschke product (Σk(l — |λ Λ | ) < ©o) and

(3.3) r(z) = exp.j j^ (z + eu)/(z - eu)dμ(t)}

(dμ is a nonnegative Borel measure on 3D, completely singular with
respect to dm) is the singular part, then

(1) If 3D c supp(μ) U closure {λ*}, then R{q) = D;
(2) If the above inclusion fails, then

R(q) = C\[mpp(μ) U closure {λ?}] .

In the latter case, the points λ* are poles (of the same order as
the zero of q(z) at z = λft) and q(z) is meromorphic in D*.

3* Now, we are going to look for a different characterization
of R(U)(Ue J^), in terms of the elements of 3ίΓ. From the previous
results, we get

COROLLARY 9. Let ̂ € = ΌH\ e ^~. Then there exists Fe 3ίT =
such that R(U(z)) = R(zF(z)). If oo is an isolated singularity

for U(z), then F can be chosen so that R{U) = R{F) if and only if
iz) is singular at z = 0.

Proof. B y C o r o l l a r y 6, t h e r e e x i s t s φeK s u c h t h a t R(U) =
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R(U(z)φ), and U, Uφ have the same kind of isolated singularities.
Thus, the same is true (except perhaps for z = °°) for: F(z) = S*U(z)φ =
[U(z)φ- Uφ)φ]z-ιeSΓ (see [4], Lect. VIII).

If oo e R{F) for all FsJίT, then oo e R(S*Uφ) for all ^ 6 K. This
implies that U(z)z~1 is regular at 2 = °o; then, by Theorem 8, zΐl^iz)
is regular at 2 = 0.

Conversely, if U~\z) has a pole of order one at z == 0, then ([5],
Chap. Ill) JiT is the direct sum of [BH2

K]L and [VHΪ]1, where ΰ e
(IN), Vej^, R(B~\z)) = C\{0} and 0eR(V^(z)).

Moreover, the mif. of B is equal to z and every function in [zH^]1

(which includes [BH2

K]L) is constant. We conclude that °o e R(F) for
all FeSΓ.

COROLLARY 10. Let ^t = UH2

K e ^~~, 3ίT = ^ r l .

(where V means "the closed subspace spanned by").

Proof. By Corollary 6 and Remarks there exists a G§ — dense
subset K§ of K such that J?(£fy) = R(U), for all ^GiΓδ.

Assume that 0 is not an isolated pole of U~ι{z), then we can
choose Kδ such that

R{Uφ) = R(U) = R[zS^+1)Uφ] = R[zT*n(S*Uφ)] ,

for all φeKδ and all n = 0,1, 2 , from which the result follows.
If 0 is a pole of (order N of) U~\z), then there exists λ close to

0 such that Xgσ(T); then we can choose

Kδ = {φe K: R(Uφ) = R(U) = R{zS*Uφ)}

then

): Φ e ^ }

and

= R(U) .

4* We do not know whether a cyclic vector F of T* (whenever
it exists!) satisfies the condition R(zF) — R(U) or not. However, this
result is true if, e.g., σ(T) is totally disconnected. In fact, we have:

PROPOSITION 11. Let ^ = C7J?| e j^~~, 3ίΓ = ~^L and assume
that o(T) = A1 U ̂ 42> where Aι and A2 are two disjoint nonempty com-
pact subsets of D: Let F e 3ίΓ be a function such that R(zF) ID A*
and let J3f7 - V^U (T*nF).
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Then ^p* Φ J%Γ\ i.e., F cannot be a cyclic vector for T*.

Proof. By hypothesis, there exists a rectifiable union of closed
arcs Γ c C - (A? U At) containing A} in its interior and separating
A? from At. Since Γ is a compact set, it follows from Theorem 1,
(iii) that there exists a constant M such that

(4.1) \\G(z)\\κ £ M\\G\\, f o r a l l G e J T a n d a l l z e Γ .

Let Ge.5ΓF*\ then there is a sequence of polynomials Pv{z) =
Σjk=oCk(T*kF) 6 3ίΓ% converging to G in j^-norm, as j -^oo. This
fact, and (4.1) imply that

(4.2) | I4P,(S) - <?(s)]|U->0, as v~+ oo, uniformly on Γ.

It is clear that R(zPv) z> B(zF) for all y. Thus, by (4.2) and the
modulus maximum principle,

\\zPv{z) — «fG(«)HJE: —• 0, as v—> oo, uniformly on At .

Therefore A*c22(«G).
On the other hand, (by Corollary 9) there exists JP0 e JΓ~ such

that R(zF0) - E(U) φ At. Hence Foe^T -

5. Finally, we are going to analyze the domain of analyticity of
the mif(^€0 q of a constant function.

THEOREM 12. Let ^£ = UH% e J^"~ αwώ assume that ^£ contains
the direction of ψeK, with mif{^f) q. Let F e J Γ = ^£ι\ then:

R(U)czB(q)dR[z(F9φ)] .

The proof is contained in the following two lemmas:

LEMMA 13. Let ̂ /f — UHl e J^~~ and assume that qφ e ^f, where
q is the mif(U) of φeK1. Then R(q)z)R(U).

Proof. Let FzH2

K be the function such that qφ = UF. The
minimality of q implies that there is no nonconstant inner function p
such that pFeH^.

Let p be any inner function such that p(z) Φ 0 for all ze D —
[#([/)]* and p(z) is analytic in (a neighborhood of) dD - R(U). It is
clear from F(z) = q(z). U~ι{z)φ{zeR{U) Π [R(U)]*) that p divides ? if
and only if pFeH2

K. Hence p must be constant and therefore q(z)
and F(z) are analytic on R(U) Π 1^(^)1*: it follows that they are
analytic on #([/). Thus R{q)Z)R{U).
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LEMMA 14. Let ^ he an invariant subspace and let F e
. Assume that qφ e ^£', where q is the mif(^£) of φe K1. Then

Proof. Let F, φ, q be as above and assume that R(q) Φ D; we
have:

(1) f_=z(F,φ)sH!, and
(2) qf = q (φ, F) — {qφ, F) e Hi, because qφ e ^£', where Hi denotes

the subspace of H2 consisting of all those functions having mean
value zero.

Therefore h(eix) = q(eix)f(eix) can be continued to an analytic func-
tion on D*{h{oo) — 0). Thus, g — zqh is analytic on R(q) Π D* and
(as in Lemma 7) / and g continue each other across any arc of 3D Π R{q).
Hence R{q) c R[z(F, φ)].

Now, Theorem 3 is just a corollary of the above results;
In fact, if Z7e (IN) with mif. g, then the set

{φ e K: mif (U) of φ is equal to q}

is a Ga-dense subset of K (see [5], Chap. V; [6]). Using this fact
and Corollary 6 and Remarks it is not hard to prove the existence of
a vector φeK and a function F e X such that:

(1) the mif (U) of φ is equal to q;
(2) R{U) = R[z(F, φ)\.
Hence, by Theorem 12,

R(U) <= R{q) c R[z(F, φ)\ = R(U) .

It follows from the results of [5], Chap. Ill (see also [2]), that
U~\z) and q~ι{z) have the the same kind of poles inside D, and every
isolated singularity of these (operator-valued and scalar-valued) two
functions lying on 3D is necessarily an essential singularity, as it
trivially follows from Lemma 7.

From these observations and Theorem 8 we get (i).
The statement (ii) follows from the results of [5], Chap. Ill (see

also [8], Chap. VI).
Finally, since qU^etfN), it follows that if R(q) is strictly larger

than D and λ*eD*Γ) R(q), then (by Theorem 8) we get (0.3):

|| U(X*)\\K = II U-WU* ^ \QM~ι\ = lift*)I .

This result can be also obtained from the canonical formulas for
IΛΓ-operators (see [2]; [3]; [5], Chap. IV). Moreover, the analytic
continuation of U(z) outside D (whenever this is possible) is provided
by the same canonical formulas.
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If 7— U*(z)U(z) has finite trace for some zeD, then we can use
the formulas of [1] in order to see that, in this case, trace norm [I —
U*(z)U(z)] is bounded (uniformly on compact subsets!) for all ze R(U).

The proof of Theorem 3 is complete now.

REMARKS, (a) If q is a singular inner function and c > 0 is the
total mass of the singular measure of r(z) (as in (3.1), (3.3)), then

\q(z)\ = 0(exp.{c(\z\ -I)"1})

(as zeD* approaches dD) and || U(z)\\κ has the same property.
(b) If dim. K— N < oo, then the behavior of U and q is even

closer. In fact, in that case we have

|det. U(z)r ^ II U-\z)\\«κ ^ \q{zTN\ £ |det. U(z) \~N ,

for all z e D such that q(z) Φ 0, and the reversed inequalities hold for
all z e D * n R{q).

(c) The similarities between the IΛΓ-operator U and its mif. q
break down at some points if dim. K is not finite.

EXAMPLE. Define Ue (IN) by Uφn = b(eix, Xn)φn, n = l,2, -. where
{Xn: 0 < Xn < l}~=i is an increasing Blaschke sequence; then the mif.
of U is q(z) = ΠJb{z, λn).

If λΛ tends to 1 slowly enough, then we can get lim. q(z) — 0, as
z —> 1 along any of the circles passing through the points {— 1, ir, + 1},
0 < r < 1. However, by a straightforward computation, we can check
that || U~ι(z)\\κ ̂  r~L on the circle passing through ir.

Added in Proof. After this paper was written, the author has
received the preprint "Boundedness from measure theory", by Henry
Helson. In this article, Prof. H. Helson gives an essentially different
proof of Lemma 4 and its corollaries, among other results.
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