Pacific Journal of Mathematics

ON EXTREMAL FIGURES ADMISSIBLE RELATIVE TO RECTANGULAR LATTICES

MURRAY SILVER

Vol. 40, No. 2

October 1972

ON EXTREMAL FIGURES ADMISSIBLE RELATIVE TO RECTANGULAR LATTICES

MURRAY SILVER

A theorem of Bender states that if a convex figure F contains no point of the two dimensional lattice G, where G is generated by the vectors \overline{V}_1 and \overline{V}_2 having enclosed angle θ , then $A(F) \leq 1/2 P(F) \max (|\overline{V}_1|, |\overline{V}_2| \sin \theta)$ where $|\overline{V}_1| \leq |\overline{V}_2|$. In this paper, two questions are answered: (1) Among all convex figures of perimeter L which are admissible relative to a rectangular lattice G, which encloses the maximum area? (2) Can the constant 1/2 in Bender's theorem be improved? By using the result of (1), the "sharpest possible" inequality of the Bender type is found.

NOTATION.

$$w_1 = \min\left(|\bar{V}_1|, |\bar{V}_2|\sin\theta\right)$$
$$w_2 = \max\left(|\bar{V}_1|, |\bar{V}_2|\sin\theta\right)$$

A(F) is the area of F, P(F) is the perimeter of F. A figure F is *admissible* relative to the lattice G, if no points of G are in the interior of F.

THEOREM. If F is an admissible convex figure relative to the lattice G, then

(i) for
$$0 < P(F) \leq \pi (w_1^2 + w_2^2)^{1/2}$$
, $A(F) \leq (P^2(F))/(4\pi)$

(ii) for $\pi (w_{\scriptscriptstyle 1}^{\scriptscriptstyle 2} + w_{\scriptscriptstyle 2}^{\scriptscriptstyle 2})^{\scriptscriptstyle 1/2} < P(F) < 4w_{\scriptscriptstyle 1} + \pi w_{\scriptscriptstyle 2}$,

$$A(F) \leq \frac{P^{2}(F)}{4\pi} - \frac{\left(P^{2}(F) - \pi \left(w_{1} \sin q/2 + w_{2} \cos \frac{q}{2}\right)\right)^{2}}{\pi (4 - \pi \sin q)}$$

where q is the root of equation (9).

(iii) for $4w_1 + \pi w_2 \leq P(F)$, $A(F) \leq 1/2 w_2 P(F) - \pi/4 w_2^2$. Further, if G is rectangular the extremal figures relative to G are shown for (i), (ii) and (iii) in Figure 1 (i), (ii) and (iii) respectively; in these cases, equality holds.

By Bender's Lemma [1], only rectangular lattices and admissible convex figures symmetric about the lines x' = 1/2, y' = 1/2 need be considered (x' and y' are coordinates relative to the lattice); in the remainder of this paper only such figures and lattices will be considered.

DEFINITION. Let G be a (rectangular) lattice and denote by R the set of all admissible rhombi whose vertices lie on the lines x' =

1/2, y' = 1/2 and each of whose sides pass through at least one lattice point of G (see Figure 2). $R(\varphi)$ denotes the rhombus in R with base angle φ (Figure 2) where $0 \leq \varphi \leq \pi$ ($\varphi = 0$ and $\varphi = \pi$ yield the two infinite strips).

LEMMA 1. Every figure F is contained in at least one rhombus $R(\varphi)$ of the set R.

Proof. Let g be one of the four lattice points which contain the intersection of the lines x' = 1/2 and y' = 1/2. Consider the following two cases: (i) g is a boundary point of F, (ii) g is not a boundary point of F.

(i) Since F is convex and g is a boundary point, there exists a line of support S of F at the point G. Construct the three remaining lines symmetric to S about the lines x' = 1/2 and y' = 1/2. By the symmetry of F, all four of these lines are support lines of F and the rhombus formed contains F and belongs to R.

(ii) Since g is exterior to F, there exists a line S' which separates g and F. Construct S through g parallel to S'. Clearly S lies in the exterior of F and the proof is completed as in (i).

Proof of the Theorem. The inequalities are proven by finding the admissible convex figure of perimeter L which encloses the maximum area (extremal figure). The problem has been reduced to rectangular lattices and symmetric figures which are contained in rhombi of R. Denote by $Y(L, \varphi)$ the extremal figure of perimeter L contained in $R(\varphi)$. The existence, uniqueness, form, etc., of the extremal figure are discussed in references [2] and [4], pp. 124-5. For fixed L, define q by A(Y(L, $(q) = sup_{\varphi} A(Y(L, \varphi))$. The maximum area is thus attained by the extremal figure contained in the rhombus R(q). Since any figure F is contained in $R(\varphi)$ for some φ (Lemma 1), $A(F) \leq A(Y(L, \varphi)) \leq A(Y(L, \varphi))$ A(Y(L, q)). The inequalities (ii) and (iii) are nothing other than A(Y(L, q)). (q)) expressed in terms of L and the lattice constants; (i) means simply that Y(L, q) is a circle. In (ii) and (iii), Y(L, q) contains lattice points on its boundary; otherwise, it is easy to construct a figure of perimeter L having larger area. Hence, for a rectangular lattice, the inequalities of the theorem are the "sharpest possible".

In the remainder of the proof, $A(Y(L, \varphi))$ and A(Y(L, q)) are determined.

 $Y(L, \varphi)$

From Figure 2, it follows for $0 < \varphi < \pi$

(1)
$$S = \frac{1}{2}w_1 \sec \frac{\varphi}{2} + \frac{1}{2}w_2 \csc \frac{\varphi}{2}$$

or

(2)
$$S\sin\varphi = w_1\sin\frac{\varphi}{2} + w_2\cos\frac{\varphi}{2}$$

 $Y(L, \varphi)$ is the parallel figure of radius r taken about a concentric subrhombus of $R(\varphi)$ (see reference 3, p. 124-5). Denoting by v the length of a side of the subrhombus,

(3) $A(Y(L, \varphi)) = v^2 \sin \varphi + 4rv + \pi r^2$ (see Figure 3).

FIGURE 3

The perimeter of $Y(L, \varphi)$ is given by

(4)
$$P(Y(L, \varphi)) = L = 2\pi r + 4v$$
.

Use (4) to eliminate r from (3). After simplification it follows that

(5)
$$\frac{L^2}{4\pi} - A(Y(L,\varphi)) = v^2 \left(\frac{4}{\pi} - \sin\varphi\right).$$

The right side of (5) is, of course, the classical isoperimetric deficit. From Figure 3,

(6)
$$S\cos\frac{\varphi}{2} = v\cos\frac{\varphi}{2} + r\csc\frac{\varphi}{2}$$

Using equation (4), eliminate r from equation (6); use the resulting equation to eliminate v from equation (5), and finally, use equation (2) to eliminate S:

(7)
$$A(Y(L, \varphi)) = \frac{L^2}{4\pi} - \frac{\left(\frac{L}{\pi} - \left(w_1 \sin \frac{\varphi}{2} + w_2 \cos \frac{\varphi}{2}\right)\right)^2}{\frac{4}{\pi} - \sin \varphi}$$

Equation (7) is valid for $0 < \varphi < \pi$. If $\varphi = 0$ or π , the extremal figure consists of two parallel lines connected by semicircles [3]. Calculation shows that the area agrees in both cases with (7). Hence, (7) is valid for $0 \leq \varphi \leq \pi$.

Y(L, q)

From equation (7), $A(Y(L, \varphi))$ is a single valued continuous function of L and φ which possesses neither a singularity nor a cusp. To find Y(L, q), the isoperimetric deficit

(8)
$$D = \frac{\left(\frac{L}{\pi} - \left(w_1 \sin \frac{\varphi}{2} + w_2 \cos \frac{\varphi}{2}\right)\right)^2}{\frac{4}{\pi} - \sin \varphi}$$

must be minimized.

If $L \leq \pi (w_1^2 + w_2^2)^{1/2}$, the solution is trivial; viz. the circle. In the remainder of the proof, it is assumed that $L > \pi (w_1^2 + w_2^2)^{1/2}$. Setting $dD/d\varphi = 0$, the condition for an extremum becomes:

(9)
$$L \cos \varphi = (4w_1 + \pi w_2) \cos \frac{\varphi}{2} - (4w_2 + \pi w_1) \sin \frac{\varphi}{2}$$
.

The value (s) of φ which yield an extremum of D must be either 0, π or a root of equation (9).

The case $w_1 = w_2$ will be treated separately; if not otherwise stated, it is assumed that $w_2 > w_1$.

LEMMA 2. The absolute minimum of $D(L, \varphi)$ lies in the interval $0 \leq \varphi \leq \pi/2$.

Proof. Consider an arbitrary rhombus $R(\mathcal{P}) \in \mathbb{R}$. From the midpoint of $R(\mathcal{P})$ mark off the distance $1/2 \ w_2$ along the line x' = 1/2; at this point construct the perpendicular d. From similar triangles,

$$rac{d}{S\sinrac{arphi}{2}}=rac{S\cosrac{arphi}{2}-rac{1}{2}w_{ ext{2}}}{S\cosrac{arphi}{2}}\;.$$

Using equation (1), eliminate S and solve for d:

(10)
$$d = \frac{1}{2}w_2 - \frac{1}{2}(w_2 - w_1)\tan\frac{\varphi}{2}.$$

If $R(\varphi)$ is rotated through 90° about its midpoint, it will not contain a lattice point (the boundary included) if $d < 1/2 w_1$. Applying this condition to equation (10), it follows that (11) $\tan \varphi/2 > 1$. Hence, $R(\varphi)$ does not contain a lattice point when rotated about its midpoint through 90° if $\varphi > \pi/2$. Suppose $Y(L, \varphi)$ is the extremal figure of the rhombus $R(\varphi)$ where $\varphi > \pi/2$. Rotate $R(\varphi)$ through 90° about its midpoint. By the preceding argument, $R(\varphi)$ and thus $Y(L, \varphi)$ contains no lattice point (boundary included). Thus, $Y(L, \varphi)$ cannot be Y(L, q). Thus, q is either 0 or a root of equation (8) $(w_1 \neq w_2)$.

LEMMA 3. For $0 \leq \varphi \leq \pi/2$ equation (9) has (i) exactly one root if $L < 4w_1 + \pi w_2$ (ii) exactly one root (viz., $\varphi = 0$) if $L = 4w_1 + \pi w_2$ (iii) no roots if $L > 4w_1 + \pi w_2$

Proof. Form the auxiliary functions $y_1 = L \cos \varphi$ and

$$egin{aligned} y_2 &= (4w_1 + \pi w_2)\,\cosrac{arphi}{2} - (4w_2 + \pi w_1)\,\sin\!rac{arphi}{2} \ &= ((4w_1 + \pi w_2)^2 + (4w_2 + \pi w_1)^2)^{1/2}\,\sin\Big(eta - rac{arphi}{2}\Big) \end{aligned}$$

where

$$aneta=rac{4w_{\scriptscriptstyle 1}+\pi w_{\scriptscriptstyle 2}}{\pi w_{\scriptscriptstyle 1}+4w_{\scriptscriptstyle 2}}$$
 .

Clearly, $38^{\circ} < \beta < 45^{\circ}$. The roots of equation (9) are the points of intersection of y_1 and y_2 . Divide the problem into three parts

(i) $y_1(0) < y_2(0);$ i.e., $L < 4w_1 + \pi w_2$

(ii) $y_1(0) = y_2(0)$; i.e., $L = 4w_1 + \pi w_2$

(iii) $y_1(0) > y_2(0)$; i.e., $L > 4w_1 + \pi w_2$

 y_1 and y_2 are cosine and sine curves; the lemma follows from the elementary properties of these curves.

From Lemma 3, it follows for (iii) and (ii) that q = 0. In case (i), D'(0) is negative and q must be the (single) root of equation (9). Thus, the extremal figures have been found and inserting the value of q into equation (7) gives the theorem (for $w_1 \neq w_2$).

The Solution for $w_1 = w_2 = w$.

This is the most important single case; viz., the square lattice. Geometrically it is obvious that equation (7) and therefore (8) are symmetric about $\pi/2$; viz., $R(\varphi)$ is identical with $R(\pi - \varphi)$ except for a rotation of $\pi/2$ about the midpoint. Hence $Y(L, \varphi)$ is identical with $Y(L, \pi - \varphi)$, except for a rotation of $\pi/2$ about its midpoint. φ can therefore be restricted to the interval $0 \leq \varphi \leq \pi/2$. In this case, equation (9) becomes:

(12)
$$\left(\cos\frac{\varphi}{2} - \sin\frac{\varphi}{2}\right)\left(\cos\frac{\varphi}{2} + \sin\frac{\varphi}{2} - \frac{(4+\pi)w}{L}\right) = 0$$

Equation (12) has two roots

(13)
$$\varphi = \frac{\pi}{2} ,$$

(14)
$$\sin \varphi = \left(\frac{w}{L}\right)^2 (4 + \pi)^2 - 1.$$

(i) $0 < L \le \sqrt{2\pi w}$. The circle is admissible and $A(B) \le (P^2(B))/4\pi$. (iii) $L > (4 + \pi)w$. Equation (14) does not yield an admissible root; since $D(\varphi)$ is strictly increasing, q = 0. The extremal figure is of the form shown in Figure 1 (iii) and $A(B) \le 1/2wP(B) - 1/4\pi w^2$

- (ii) $\sqrt{2} \pi w < L \leq (4 + \pi)w$. Case (ii) decomposes into two cases:
- (iia) $\sqrt{2\pi w} < L \leq \sqrt{2} (4+\pi)w$
- (iib) $\sqrt{2} (4 + \pi)w < L \leq (4 + \pi)w$

Case (iia) If $L \leq 1/\sqrt{2}$ $(4 + \pi)w$, equation (14) offers no solution; since $D(\varphi)$ is strictly decreasing, $q = \pi/2$. Thus, for all L in (iia), the extremal figure is contained in $R(\pi/2)$. The desired inequality becomes $A(B) \leq \frac{1}{(4 - \pi)} (-1/4L^2 + \sqrt{8}wL - 2\pi w^2)$. Note that there is no analogy if $w_1 \neq w_2$.

Case (iib) q occurs in $(0, \pi/2)$ and is given by equation (14). The extremal figure has the form shown in Figure 1 (ii) and $A(B) \leq (L^2)/(4 + \pi)4 + w^2$.

References

1. E. Bender, Area-perimeter relations for two dimensional lattices, The Amer. Math. Monthly **69** (1962), 742-744.

2. A. S. Besicovitch, Variants of a Classical isoperimetric problem, Quarterly J. Oxford (2) 3 (1952) 42-49.

3. A. Dinghas, Zum isoperimetrischen problem, Mathematische Zeitung, Band, 47 (1942), 680-685.

4. L. Fejes-Toth, Filling of a Domain by Isoperimetric Discs, Publ. Math. Debrecen, 5 (1957), 119-127.

Received February 4, 1970, and in revised form April 26, 1971. This paper is part of the author's Ph. D. dissertation submitted to Professor L. Schmetterer at the University of Vienna.

WAYNE STATE UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305

С. R. Новву

University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON * * * AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. **39**. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Pacific Journal of MathematicsVol. 40, No. 2October, 1972

Louis I. Alpert and L. V. Toralballa, <i>An elementary definition of surface area</i> in E^{n+1} for smooth surfaces	261
Eamon Boyd Barrett, A three point condition for surfaces of constant mean	
curvature	269
Jan-Erik Björk, On the spectral radius formula in Banach algebras	279
Peter Botta, Matrix inequalities and kernels of linear transformations	285
Bennett Eisenberg, <i>Baxter's theorem and Varberg's conjecture</i>	291
Heinrich W. Guggenheimer, Approximation of curves	301
A. Hedayat, An algebraic property of the totally symmetric loops associated	
with Kirkman-Steiner triple systems	305
Richard Howard Herman and Michael Charles Reed, Covariant	
representations of infinite tensor product algebras	311
Domingo Antonio Herrero, Analytic continuation of inner	
function-operators	327
Franklin Lowenthal, <i>Uniform finite generation of the affine group</i>	341
Stephen H. McCleary, 0-primitive ordered permutation groups	349
Malcolm Jay Sherman, <i>Disjoint maximal invariant subspaces</i>	373
Mitsuru Nakai, Radon-Nikodým densities and Jacobians	375
Mitsuru Nakai, Royden algebras and quasi-isometries of Riemannian manifolds	397
Russell Daniel Rupp, Jr., A new type of variational theory sufficiency	
theorem	415
Helga Schirmer, Fixed point and coincidence sets of biconnected	
multifunctions on trees	445
Murray Silver, On extremal figures admissible relative to rectangular	
lattices	451
James DeWitt Stein, The open mapping theorem for spaces with unique	
segments	459
Arne Stray, <i>Approximation and interpolation</i>	463
Donald Curtis Taylor, A general Phillips theorem for C [*] -algebras and some applications	477
Florian Vasilescu, On the operator $M(Y) = TYS^{-1}$ in locally convex	
algebras	489
Philip William Walker, Asymptotics for a class of weighted eigenvalue problems	501
Kenneth S. Williams, <i>Exponential sums over</i> $GF(2^n)$	511