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Let F' = GF(q) denote the finite field with ¢ = 2" elements.
For fIX)e F{X] we let

S(f) = 2] e(f (@) .

zEF

A deep result of Carlitz and Uchiyama states that if f(X) +
g X2+ 9gX)+ b, 9 X)eF[X],beF, then

|S(H)] = (deg f — gt .

This estimate is proved in an elementary way when deg f =
3,4, 5 or 6. In certain cases the estimate is improved.

If a e F then ¢® = o and o has a unique square root in F namely
. We let

(L.1) ta)=a+a*+a”+ oo + a7,
so that i(a) e GF(2), that is ¢(a) = 0 or 1. We define
(1.2) e(@) = (— 1",

so that e(a) has the following easily verified properties: for a, a,c¢ F

e(a, + a,) = e(a,)e(a,)
and
q, if a, =0,

1.3 1) = .
(1-3) g“pe(a ?) 0,ifa,# 0.

Let X denote an indeterminate. For f(X)e F[X] we consider the
exponential sum

(1.4) S(f) = 2 e(f(@)) -

We note that S(f) is a real number. Since S(f) = e¢(f(0))S(f — f(0))
it suffices to consider only those f with f(0) = 0. This will be
assumed throughout.

If f(X)e F[X](f(0) = 0) is such that

(1.5) f(X) = 9(X)* + 9(X) ,

for some ¢g(X)e F[X], then f(X) is called exceptional over F, other-
wise it is termed regular. Clearly f can be exceptional only if deg
fis even., If f(X) is regular over F', Carlitz and Uchiyama [2] have
proved (as a special case of a more general result) that
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(1.6) |S(f)| = (deg f — D)g'”.

Their method appeals to a deep result of Weil [3] concerning the roots
of the zeta function of algebraic function fields over a finite field. It
is of interest therefore to prove (1.6) in a completely elementary way.
That this is possible when deg f = 1 follows from (1.3) and when
deg f = 2 from the recent work of Carlitz [1]. In this paper we show
that (1.6) can also be proved in an elementary way when deg f = 3,
4,5 or 6. Moreover in some cases more precise information than that
given by (1.6) is obtained. Unfortunately the method used does not
appear to apply directly when deg f = 7. The method depends on
knowing S(f) exactly, when deg f = 2 and when f is exceptional over
F. These sums are evaluated in §2, 3 respectively.

2. degf = 2. In this section we evaluate S(f), when deg f = 2.
This slightly generalizes a result of Carlitz [1]. We prove

TaeEorREM 1. If f(X) = 0, X* + a,X e F[X], then

q, ifa%:aza
S(f)_{o, ifat+ a, .

Proof. We note that the result includes the case a, = 0 in view of
(1.8). If @, 0 then S(f) = Sere((@? ™ ) + a0, (@2 7)) = Spe re(@>+

—on—1 —gn—1

a.a; x), since © — a; % is a bijection on F. By Carlitz’s result [1]
Jifaa ™ =1,
S = {0
0,if g2 = 1.

—gn—

This proves the theorem as a,a;*" " = 1 is equivalent to a? = @, in F.
We remark that «,X*® + a,X is exceptional over F' precisely when
¢ = Qs

3. f exceptional over F. In this section we evaluate S(f),
when f is exceptional over F. We prove

THEOREM 2. If f(X)e F[X] is exceptional over F then S(f) = q.

Proof. As f is exceptional over F' there exists g(X) e F[X] such
that
F(X) = g(X)* + 9(X) .

Hence for x e F we have

Uf (@) = tg(x) + g(2)) = g(@)™ + g(x) =0,
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so that e(f(x)) = 1, giving S(f) = ¢.

4, deg f = 3. We prove

THEOREM 3. If f(X) = a.X® + a,X* + a,X e F[X], where a; = 0,
then

[S(f) = K(f)g'”,
where K(f) > 0 is such that
K(fy =1+ (= 1" 3 e(at’ + al).

3ZGF
te=1/ag

(In particular if ¢ = 1/a, has 0, 1, 3 solutions ¢ in F then K(f) =
1, K(f) = 0 or V' 2, K(f) < 2 respectively. Thus we have the Carlitz-
Uchiyama estimate |S(f)| < 2¢'#, and by arranging K(f) = 2 in the
last of the three possibilities indicated we see that it is best possible).

Proof. We have
SUP = 3 e +9) + ae + 9) + ao + 1)

so on changing the summation over #,y into one over w, (= & + y)
we obtain

S(f) = g}e(asﬁ + a,t® + alt)xgm e(aste? + at’x) .

By Theorem 1 we have

S ofadet + a,f'n) = q, if a;t = (a,t?)?,
fer i 0, if a.t = (at*)*,

so that, as a, = 0, this gives

Sy =q 2 eat’ + at’ + at)

teF
agtd—t=0

ol + (=" 3 et + ait)},

ter
t3=1/aqg

I

as e(1) = (— 1), which completes the proof of the theorem .

5. deg f =4. We begin by giving necessary and sufficient con-
ditions for f(X) = a,X* + a,X® + a,X* + a,X e F[X], where a, = 0, to
be exceptional.

THEOREM 4. f(X) = a,X* + a,X* + a.X* + o, X € F[X], where a,
0, is exceptional over F if and only if a, = o + at and a, = 0.
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Proof. f(X) is exceptional over F if and only if there exists
rX*® 4+ sXe F[X] such that

aX*+a. X+ . X+ a,X =X+ sX)¥+ (rX*+ sX) .
This is possible if and only if
a=7r,0,=0,a,=8+7ra =8,
that is, if and only if,
g, =r=@@+=a+s=a+aand a,=0.
We now evaluate |S(f)|. We prove
THEOREM 5. If f(X) = a,X* + a,X® + a,X® + a, X e F[X], where

a, = 0, then |S(f)| is given as follows:
i a=20

s o a4y =a +ai,
S = g, z';aﬁéaiiaf.
(i) a;#0
|S(A) = K(f)g'”,
where K(f) > 0 is such that

K =1+ (—1" S et + at* + at) .

teF
t3=1/ag

(Thus in particular when f is regular we have K(f) =<2 so the
Carlitz-Uchiyama estimate | S(f)| < 3¢'” can be improved to | S(f)| =
2¢*7).

Proof. (i) For le F we define

T = X e((ak + at + Da* + a2 + a.2) .
zeF
By Theorem 4 (a2 + a)X* + a,X* + a,X is exceptional over F' so that
by Theorem 2, T(0) = q. Now
TP = 5 el(@s + at + D@+ ¥) + @, + ) + a@ + y)
= Z 6((&2 + at + l)# + aztz + a/lt) )

z,teF

on setting ¥y =« + ¢t. Thus we have T()* = ¢qT(l), so that T(}) =0
or q. But we have

leZF ) ZNZF e((a} + ada* + a2’ + a,x) l% e(la) = q,
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that is,
> T =0,
F

0#le
giving T(l) = 0, when [ == 0. This completes the proof of case (i).
(ii) We have as before

S(f) = tezé e(adt + ast® + a.t* + at) %e(%tmg + a,t’x) .

Now by Theorem 1 we have

Z e<a tor? +a tz.’k}') _ q, if a/gt = (astz)z )
ey A ? 0, if a,t = (a.t’)*,

so that, as a, = 0, we obtain

SUr=a 3 et + af + al' + a)

€
agtt—t=0

=q{l+ (= D" > e(at + a.t® + a)},

te
t3=1/ay

which completes the proof of the theorem.

6. deg f =5. We prove the Carlitz-Uchiyama estimate in an
elementary way.

THEOREM 6. If f(X) = a;X° + a,X* + ¢, X° + a,X* + 0, X e F[X],
where a; == 0, then |S(f)| = 4¢'".

Proof. As before we have

S(F) = Selat + «-« + a,t) D) elatxt + atx’ + (aif + at?)) .
tef e

By Theorem 5 we have

g, if a;t = (a0 + (at* + a,th)*,
e(atet + ate® + (at* + at)e) = . ;
erb ( e (@, *)2) 0, if a,t # {(a.t)* + (at* + a,t)*,

and as ait'® + at® + ait® + ast = 0 has at most 16 solutions ¢ in F we
have

| S(f)

PZ16q, (SN =4q¢".

7. deg f = 6. We begin by giving necessary and sufficient con-
ditions for f(X) = qeX®* + --- + a,X € F[X], where a, == 0, to be excep-
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tional over F.

THEOREM 7. f(X) =a,X°+ a;X° + a,X* + ¢, X° + a,X* 4+ a,Xe
F[X], where a; = 0, is exceptional over F if and only if a; = a3, a, =
0,a, =a:+ ai.

Proof. f(X) is exceptional over F if and only if there exists
rX® + sX* + tX e F[X] such that

X+ v + a0, X=X+ X2+ r X))+ (r X+ sXP+ tX) .
This is possible if, and only if, we can solve the equations

a=7r,a=0,0=8a=r0=13+sa="=t,
that is if, and only if,
=03, a,=0,a,=8=(,+ ) =a+t=ai+ ai.
We now evaluate |S(f)|. We prove
THEOREM 8. If f(X) = a,X° + a,X° + a. X* + a,X® + a,X* + a,X €

F{X], where a, # 0, then |S(f)| is given as follows:
(i) a;=0,0, =0}

S0 ={0 famai ot
(ii) a; =0, a5 = a}
IS = VI + n(f) ¢,
where n,(f) denotes the number of solutions te F of

1
as + a3

=
(i) a; =+ 0
SN = VT + nlf) ¢,
where n,(f) denotes the number of solutions te F of
(7.1) ait® + (@i + ad)t" + (@, + adt +a; = 0.
(Thus in particular when f is regular we have
IS(H = VT +15 ¢ = 4¢'",

which improves the Carlitz-Uchiyama estimate |S(f)] < 5 ¢'/.
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Proof. (i) For le F' we define
T() = 3, e(@ia’ + (@i + ai +. Do’ + a0’ + 02" + a,1)
By Theorem 7 a}X°® + (a2 + a)X* + a,X* + a,X* + a, X is exceptional
over F so that by Theorem 2, T(0) = q. Now
Ty = %Fe(aé(x" + 9 + (@ + a + D@ + ¥) + (@’ + ¥)
+ a,(@* + ¥) + (@ + v))
=m,tepe(a§(x‘t2 + @t ) + (a2 + af + Dt + ay(a’t + ot
+ ) + a.t* + ait),
on setting ¥y =  + . Thus we have

T(): = ;‘? e(aZt® + (a2 + af + Dt + azt® + a.t® + a,t)
3 e((@?)xt + (aitt + ast)e® + (ath)x) .
zeF

Now as a; = a? and a; = 0 we have a, = 0. Hence for ¢t = 0 by Theorem
4 (@) X* + (ait' + ast + a;t) X* + (a,t) X is exceptional as ait* = 0 and
(@2t* + ast)? + (a:t?)* = ait® + ait* + ait® = ait®.

Thus for ¢ = 0 by Theorem 2
She((@it)at + (st + at)a* + (at)x) = q .

zeF

This is clearly true for ¢ = 0 as well so that T())* = ¢T(l), giving
T(@) = 0 or g. But we have

ZEZF T =sz e(ai® + (a2 + ad)z* + a.8° + a.2° + a,x) le% e(la') = q ,

that is
T =0,

O#le F

giving T(l) = 0, when [ = 0. This completes the proof of case (i).
(ii) As before we have

S(f) = g‘fpe(ast‘* + aitt + at® + a.tt + a,f)
X EEZFe((astz)x“ + (agt* + aH)a® + (at)x) .
By Theorems 1 and 5 we have
%e((a.,tz)x‘ + (agt* + ast)a® + (asth)x)

9 if agt® = (ast* + aqt)® + (ast?)*,
0, if agt? = (agtt + ast)® + (astd)* .
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Thus
SUfY = q 3/ e(ast® + at* + at* + a.t* + ajt) ,
teF

where the dash () denotes that the sum is over those ¢ such that
(as + ad)*t® + {ag + ))& = 0.
For ¢ 0 this becomes

1

=
= =
Qg + a3

as a; + ai % 0 in view of ¢z = ai. This completes case (ii).
(iii) As before we have

S(f)E = t% e(agt® + <o+ + alt)xé e({ast® + at)at + (agt* + ab)a’
+ (agt* + athHw) .
By Theorems 1 and 5 we have
z;Fe((ast2 + at)xt + (agtt + ait)a® + (at* + a.t)x)

q, if agt® + at = (agt* + a.t)® + (at' + at?)*,
- 0, if ast® + ayt # (ast* + ast)® + (a;t* + agt)* .

Thus
S(F) =g 2l el@t’ + -+ + ait)
where the dagger (1) denotes that the sum is over those ¢ such that
ait® + (@ + ap)t® + (s + a)t* + a;t = 0.

For t= 0 this becomes (7.1) which completes the proof of case (iii).

7. Conclusion. We conclude by remarking that the elementary
method of this paper does not work when deg f(X) = 7, since in this
case we have

S(f) = ;e(ayﬁ + oo F alt)%e(gt(w)) ,
where

9:(X) = (@:0).X° + (@) X° + (@’ + at® + a;H) X* + (a,8) X?
+ (@t + agtt + at) XP + (8" + ait* + a,t) X

has a monzero coefficient of X° for ¢ = 0.
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