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A particular integral of Kummer’s inhomogeneous dif-
ferential equation is obtained when the right hand member
belongs to a general class of multiform functions. A few
basic properties of the solution function are established.

1. Introduction. Let ¢ be a complex constant but not negative
real. We denote by <Z, the Riemann surface of z°. Suppose f(z) to
be analytic everywhere on the disc K;: |z| < R, and let

2% = {6(2) |4 = 2°f(z); f analytic on K.} .

Then, to each element of the multiplier space .22, there corresponds
one and only one element of the product space .2¢%° which is regular
everywhere in the domain K, of the analytic component f(z) slit and
screwed in the usual way, if necessary. A few subspaces of .5;° are:

*%?m: {¢|KR’ R= o< OO}
7 {#| analytic component a polynomial of degree p}

and
T {8] | f™(0)] < BE™, (B, k) > 0}.
Now consider the equation
1.1 2 W L b—2) W g = g2 .
dz* dz

The associated homogeneous problem leads to Kummer’s confluent
hypergeometric and other well-known transcendental functions. But
the properties of the particular integral of the inhomogeneous equation
have been studied in detail only recently by Babister [1] who has
considered a few particular cases. In this paper we take the general
classes 9730, Fol, i and use Frobenius’s method to show that
in each case a particular integral of (1.1) exists and belongs to some
similar subspace of 2¢7%4"'. We also give some basic properties of
the solution-function which we have called quasi-Kummer.

As f(z) is analytic on K, ,
f@ =3 L Qe 21 < R

Accordingly, a formal series solution of (1.1) is given by
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0'{(1,, _ =~ (0 + a + l)nPn<a; ay b; f) n+o+1
a4 (G re) = 5T R RN g,

where

Ca b f) = 2 (0 Da(0 4+ By F7O)
(1.9 Pioi 0, b f) = 30 L0 e L

and (v), denotes the Pochhammer product v(v + 1) --« (v + 2 — 1) .

2. Some subsidiary results. In order to establish our main
results, we require some formulae which will be stated in the form
of lemmas. For convenience we write:

a=]c+a+1] N=sec(l/2arg(c + a+ 1))
B =0+ b| ¢ = sec(1/2 arg (o + b))
v =|o+ 1| vy =sec(l/2arg (o + 1)).

Also, it is assumed that «, B, v are all finite and positive.

LEMMA 1. For 0 < R <\ < oMax._p | f(2)]| = M(R)

o DN [(Banr o MB)
) FErEs el Rl aetel
. - BN | Mass | 1 _ o MB) , _

(i) |Pos 0, b5 )] 5 | B Bis 41— o B, v — 120
(ii) wun+mv4gglg=v=a—1>o

Proof. By Cauchy’s inequality

b )] < S | C Dl + D | M)
Puoi 0,55 )| £ 3 |0 2=00 e |2

b

which on applying Erber’s estimate [3]:
1 _ sec"'(1/2 arg /)

[0)a] ([0])n
and after simplification proves the first part of the lemma. The second

part follows mutatis mutandis on replacing g by 7. Also in the third
case |P,(0g; a, b; )| < (B N'Y Dm0 1/7 + m. Hence the result.

, largd| < =w

LemmA 2. If |f™(0)| < Bk™, B> 0,k > 0, then

—B—ZF{Y’ B <t
A « ]

Bl ZF{"’B; ﬂ} l=in< i,
) o 1

| P,(0; @, b; f)| =
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Proof.
2@+ Va0 + by B
m= (0 +a+1), m!

BI* &4 (Na(B)nf 1\
= A mZ:'o(a)mm!< l ) 1=k <

|Po; a,b; /)| =B

which leads to the second part. The proof of the first part is very
straightforward.

3. Main Theorems. By Lemma 1 (i), the modulus of the general
coefficient in the power-series (1.2) can be majorised by

(Bess , 1 _ g |__M(EB)

(@)n(V)n <M¢_y_)” .
(@), MB—a+1|

(’Y)n+1(,8)n+1 R

Hence the series converges absolutely and uniformly to an analytic
function for all |z] < R/apuy. Another majorant is provided by Lemma
1 (ii) both leading to

THEOREM 1. If §€ 573t (M 14 9) < oo, then (A7 |3 f@)) e 7255,
oy £ R and | A, <glg f(z) )l never exceeds

M(R)|z°+| i ZFI[’Y, 1 Mev[z]] J’{a’ 7, 1 . Mw]zlj“

BIMB — a + 1] v+1 R g+1,v+1 R
B—a+1+-0,
or

M(R)|z""| {“;,[B,l vz MEREE .Mwlz]}
gvy—a+l] [T g+1 R e+ L,v+1 R )
Y—a+1+#0
or

1 v, 2 MWIZIJ oy
— F, ; yB=7v=a—-1>0.
BN [7+1,1 R

Similarly from Lemma 2, we easily obtain

THEOREM 2. If¢€ .90, (\, tt V) < oo, then 1A1<g e f(z)> e oron

o
and |1A1(z

(g; f (z))‘ is dominated by
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B[za+1| v, B a, 1 ) 1

Blz7™| Y B kk] [a, 1 "

—— .F H o H l 1< kev<l.
BYN [a ! 7+1,,6’+1#y|z|_1 <

Now, if f(z) is a polynomial of degree p, then for all nonnegative
integers », P,..(0; a, b; f) = P,(c; a, b; f). Hence, denoting the set of
nonpositive integers by Z°~ we have

THEOREM 3. If ¢€ 2475, (0+ 1,0+ a+ 1,0+ b)¢ Z, then
=t (0 + a + 1),P,(0; a,b;
b r@) = 54 LD b

cla

Al 2 0+ Durd0 + Do

(0 + a + 1),P,0; a, b; f) c+a+1+4+0p, 1 z}
(0 + 1)p4:(0 + b)pss c+b+l4+po+2+p |

a+1+'n

+ a+1+:02F2 ‘:

4, Contiguity relations. As the generalized power series (1.2)
is uniformly convergent, a number of interesting contiguity relations
can be obtained by applying the operator d/dz or 6(= z d/dz) termwise.
For example

d gla lla +1
” 2 (|5 @) =oal” YT )
ola+1 df
+1A1(z b+1, dz>'
ola o
w—a—nﬂ(];f@)=w+b—nA(‘ ;ﬂ@
AR z|lb—-1
ola +1 c+1la ar
(42 —4a+a+nﬁ(z b,fw)+A( ! b_lﬁ>
c+1la+1df
ﬁlAl( z b %)
Now, as ,A, can be written as
2T f(0) (0 +a+ D& (0 +a+ 2),2"
R R e P s e s

5 (0 + Du(0 + b)y f™(0)
+m§f (6 +a+1), m! }

we have on simplification

(4.3) A, (a (0+1
2

(Z; f(Z)) - 1A1

a f(z) — f(O))
b z
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_ __ fe (0 + a + 1) f(0)z"+ [a+a+2, 1 ]
T+ Do+b) T (@+Do+b: "lo+b+20+8"

As particular cases, we see that

a

b

-1 -1
A, (” ‘“; e"‘) = A,,(a, b; 2) and A, (”
2 b z

; 1) — 6.(a, b; 2)

where 4 and 6 are Babister’s nonhomogeneous confluent functions, so
(4.1) and (4.3) reduce to known results [1], (4.236), (4.189). Also from

(4.3)
ola Qa, *cc,Q
1A1 ;F 1y ’ P;
(z b’ [bsz
Ay - Q cla a,+1, ---,a,+1 1
4.9) — A S F T ])
( ) bl.-.bq (z b p+ q+1!jb1+1,"',bq+1 9 2

. za+1 + (0-+a+1)z0+2 0+a+2’ 1 .
@+ D+ 0+ Do+ o +b+2,0+ 3

with the usual restriction on the parameters.

5. Illustration. The above results are of particular advantage
when the analytic component of ¢ involves funetions of hypergeometric
type because these (for that matter, almost all) special functions belong
to one of the classes considered.

For example: (See Table on next page).

The first four are Babister’s nonhomogeneous confluent functions,

the next three are obtained via a result due to Carlitz [2]:

a,l+ a/2, b ¢ d;
o a2, 1+a—-5b14+a—c¢1l+a—d]|,
_ (4 a0+b0+00+d,
L+a—0.1+a—c)l+a—d,n

provided that ¢ = b + ¢ + d. In the last two cases P,(o; a, b; f) =
((o + 1),)/n! or n + 1 respectively yielding the results with the usual
restriction on the parameters.

Some other properties of ,A, (g ‘ %; f (z)> will be discussed in another
communiecation.
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n.m g+ euwd«.mm

¥q 4+ 2%(1 + 9)

A T

Tw

B0+ 0 2+02(1 + 0 + 9) T+D+o0
JHa+E07, @)+ 9) 9+
2 ¢ Tgurrxt ' A7 ‘
[ TIiL.m o2 N.H+e+Lrﬁ !
, 8+t 4— P8+ 23+ 0+ G+ q+ 07 e FOA+9) | My 8 tota=18 2t ot gt qtozy |,
2+9—12‘C+03+92‘T+D+ o 1402 T+9—28 3+ 0+ 9°G+ 0z + 07 el
[:4F0-P-28 40t Qb 9y o) TMTFTii:sfimitﬁim »
Q—2+1C+ D+ 9z 1402 9—=2G+ D¢+ 2T+ v+ 97
_Hﬁjswb,miiém age @A+ 2) RN A S Sk Bch I
DT+ q+ 0+ 9g 1402 T-2Q+Di+T+29+ 0+ 0
(% :q ‘m)e*dy 2@ I—o
(219 ‘D)9 1 1—0
AN ue va&. Ad[Hv.NAH+®|SVVN Q . .ﬁ
- 2/:2(9—3). 1143
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K @d—3 0
,Q 4
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