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An infinite complete Boolean algebra satisfies \B\*o = \B\
(where | | denotes cardinality). This is a theorem of R. S.
Pierce, derived in consequence of his general decomposition
theorem [9]. It is here shown (directly) that | £ | * O = |JB|
for B merely countably complete; this has the corollary
(actually, equivalent) that if A is an algebra of measurable
functions modulo null functions, and D is a subset of A
which is dense in the uniform topology, then | D | = ] A \.
The relation \B\* = \B\ for f-complete Boolean algebras B
is considered; the main result is a structure theorem for the
nontrivial counterexamples (which are shown to exist abun-
dantly).

The contribution of the referee deserves special mention. In
detail, he translated our original paper from topology into Boolean
algebras, simplifying the results and their poofs, and he removed
our use of the Generalized Continuum Hypothesis in the theorem on
countably complete algebras. (We announced the latter theorem,
with GCH, in [3]. Subsequently, Monk and Sparks announced the
result, with no mention of GCH, in [8]; this was our first knowledge
that the result was obtainable with GCH. We do not know how our
methods and those of Monk and Sparks compare.)

Following the referee's advice, our setting is Boolean algebras,
but we indicate the translation to topology. The means is Stone
duality, of course, whereby the Boolean algebra B is isomorphic to
the algebra of open-and-closed subsets of the Stone space S (B) [7,11].
It results that \B \ = wS(B) (where w is the weight, or least cardinal
of an open basis), and that B is f-complete if and only if S (B) has
the property that the closure of \J^ is open whenever ^ is a
family of clopen sets with | %f | ^ f. Thus, the dual form of the
theorem on countably complete algebras is that (wX)*° = wX when-
ever X is infinite, compact, and has the above property, commonly
called basic disconnectivity. (The Stone spaces of complete algebras
are said to be extremally disconnected.)

For B a Boolean algebra and be B, we write (b) = {aeB: a ^ 6}
and we set I 6 I = I (6) I. A subset D of B is disjointed if dι Φ d2 in
D implies dι/\d2 = 0.

1* LEMMA. Let ϊ be infinite, B a t-complete Boolean algebra
and D a disjointed subset of B with | D | Ξ> ϊ. Let b = lub D. Then
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(δ) = Π (α) and \ b | = Π I a | .

Proof. Define the Boolean homomorphism φ\ (b) —> ΐ[aeD (α) by
the rule (y(c))β = α Λ c Clearly, 9? is one-to-one. If pe][[aeI)(a),
then pa^a for each α e A and p = φ(lub{pa: ae D}) results from
f-completeness.

2* THEOREM. // i? is cm infinite, countably complete Boolean
algebra, then | B |*° = | B |.

Proof. Suppose there is a counterexample, and choose one, B, of
minimal cardinal m. Let J ^ { 5 e B : | b | < m}; if α e J , and | α | is
infinite, then | a |κ° = | a \ by minimality of m. We assert that

( 1 ) J is a σ-ideal of B and
( 2 ) JB/J is finite, so that \J\ = m.

Surely J is an ideal. Given a countably infinite subset D of J let
α = lub ΰ and let Df be a countably infinite, disjointed subset of J
with 6 = lub D'. Then

α I ̂  2*0

by the lemma, so

thus I 6 I :£ m, so | δ | < m and 6 e / and (1) is proved. If (2) fails
there is a disjointed sequence {bn}n<ω of elements of B\J, so that
(again from the lemma) one has

m = \B\ ^ |

To complete the proof let

Q = {S<zJ: I S I ^ K o }

and for SeQ define φ(S) = lnbS. Then φ(S)eJ whenever SeQ
(by (1)), and for beJ one has

φ-1(b)cz{SeQ:Sc:(b)}.

Thus for each b in J either (b) is finite or

I φ~ι (b) I ̂  I 6 |*o = I b I ,

so from (2) we have

m < m * o = | j | K o = |Q |5SΣ>e,Ko | δ | < m « 0 m = m .

This contradiction completes the proof.
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We derive as a corollary the result mentioned earlier on algeblas
of measurable functions perhaps modulo an ideal of null functions.
Let T be a set and J / c 2 Γ a σ-field; let M be the real functions /
with f~\θ) e Saf if θ is open. Let ^V be a σ-ideal of Jzf and N
those feM with support in ^K Endow M/N with the metric of
uniform convergence except on a member of ^/K (In this metric,
M/N is complete.)

3* COROLLARY, Any dense subset of M/N has cardinality \M/N\.

Proof, If X is a topological space, let D{X) be the almost-finite
extended real-valued functions on X. Taking X the space of maximal
ideals in M/N, X is basically disconnected and M/N is isomorphic
and isometric to D(X) [6] (where D(X) has the metric of uniform
convergence on all of X). With δ denoting minimum cardinal of a
dense subset, δD(X) = δC(X) [4]. Since X is compact, mX = δC(X)
[11]. By the dual form of the preceding theorem, (wX)*° — wX.
But of course, δC(X) ^ | C(X) | ^ (<5C(X))*°, since sequences from
any dense subset of C(X) determine C(X) (as with any metric space).
The proof is complete.

The corollary applies, of course, to Lebesgue measurable functions
on the reals, modulo or not the usual null functions, and to Baire
and Borel functions on any space modulo or not various ideals of
null functions, e.g., the ones vanishing except on meager sets. See
[7, 11].

We next consider the possibility of generalizing the result on
countably complete Boolean algebras. As a point of reference, con-
sider the statement: if B is infinite and ϊ-complete, and contains
a disjointed family of cardinal ϊ, then \B\t= \B\. (The last hy-
pothesis prevents the choice of complete B and relatively huge f.)
We present a positive result under additional hypotheses, a class of
counterexamples, and a theorem describing all counterexamples. For
these, recall that the cofinality of the cardinal m, cf(m), is the least
f for which a set of m points is the union of ϊ sets each of <m
points, m is called regular if cf(m) = m, and otherwise singular.
We encounter cf(m) in these considerations because mc/(tn) > m always,
and with GCH, cf(m) is the least such exponent [1]. Thus, we are
forced, essentially, to consider algebras B which are ef(\B\)-complete,
and the structure theorem below (6.) is for these.

4. THEOREM. Suppose that B is infinite, t-complete, has a dis-
jointed family of cardinal ϊ, and that p<\B\ implies 2P <̂  | B |. If
either \B\ is regular, or for each be B there is a tί b with \ a | < | B |,
then \B\* = IB I.
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This is from the original version of the present paper titled
the relation πί1 = m in Stonian spaces. The proof can be found in
the first author's survey [2] (in topological dual),

5. EXAMPLES. Let m be singular with m*° = m. Let I and ϊ
satisfy c/(m) ^ f ^ I ^ F < m . Let Ax be the completion by cuts of
the free Boolean algebra on m generators (or equivalently, the algebra
of open-and-closed subsets of the protective cover [5] of the topological
space 2m); so | A, \ = m. Let A2 be the algebra of f-sets (i.e., sets of
cardinal at most ί) and co-f-sets in a set of cardinal ϊ; evidently, A2

is f-complete, but not incomplete unless ί = I (in which case A2 is
complete).

The algebra B = At x A2 is f-complete and has a disjointed
family of power ! (indeed, I), but

I B I = m < mc/(m) g mι .

And all examples are like this.

6* THEOREM. Let m be infinite and singular, with the property
that for each p < m either 2P < m or 2P = p+. If B is a cf(m)-
complete Boolean algebra with \ B \ = m, then B = A1 x A2, where

(a) I Ax I = m and \ A2 \ < m;
(b) if 0 Φ be A i y then \b\ = m;
(c) if D c At and D is disjointed, the \ D \ < cf(m);
(d) Ax is complete.

Proof. Define

JL — {a e B: \c\ = in whenever 0 Φ c e (a)}

and J2 = {be B: | b | < m}, so that Jλ and J2 are disjoint ideals in B.
Given a disjointed subset D of Jι with | D | <̂  c/(m) we have

from the lemma

so that I D I < c/(m). If follows that Jx = (αx) for some element α:

of Jx: given a maximal disjointed subset D of Jx we have | D \ <cf(m)
from the computation above, so that lub D = αx exists in 5; evidently
αL G J w and J1 = (αj by maximality. Another consequence is that
(αj is a complete Boolean algebra: given a subset S of (αx) some
disjointed subset D of (a,) is maximal with respect to the property
that it refines S (i.e., for each d in D, de(s) for some s in S), so
that lubD exists in (a,).
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Let α2 be the complement in B of (αj, and set Ax = (αj and
A2 = (α2). The other assertions being obvious, it remains only to
show that \ A2\ < m.
We claim first:

(*) if E is a disjointed subset of J2 and t> = Σδe£ |δ|> then J X m .
If £ ^ m then either | E \ = m or sup {| 6 |: b e E) = m. In the former
case we would have

m=\B\ = \{ScE:\S\ = cf(m)}\ = m«M > m ,

and in the latter, replacing E if necessary by a subset Ef for which
I E' I = c/(m) and sup {| δ |: be Ef) = m,

m ^ I 5 I ̂  I lub £" | = Π I δ | > m .

In either case a contradiction is achieved and (*) is proved.
Now let E be a maximal, disjointed subset of (α2), let

\E\ = £ < m, and set if = Uδei?(δ) Because £7 is maximal the map
c—> Kf\{c) is one-to-one from (α2) to the power set of Z" Thus
I α21 ^ 2*1 (and t> < m by (*)). The assertion | α21 < m now follows
from the cardinality hypothesis of this theorem together with the
fact that p+ is a regular cardinal.
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