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The space ¢, is shown to contain a closed and bounded
symmetric convex body such that no point of its complement
has a nearest point in it. Related results involving the
existence of functionals which support each member of a
family of convex sets are also discussed.

1. Introduction and preliminary results. It has been shown
in [3] that if X is a separable conjugate Banach space (i.e., if
X = E* where E is a normed linear space and X contains a countable
dense set) and if S is a closed, bounded set in X then, for every
nonnegative real number d, there exist z in X and s, in S such that

d=llz — sl = inf{|]|x — s]]: seS}.

Further, it was shown that under the additional assumptions that the
unit ball in X and the weak* closed convex hull of S are both strictly
convex, the set of points in X admitting nearest points in S is weak*
dense in X. The aim of the present paper is to define more precisely
the relationship between these geometrical properties and the assump-
tion that X is a separable conjugate space. The paper is concerned,
for the most part, with the behaviour of ¢, in this respect. As is
well known, this space is separable but not a conjugate space.

Our results show, first of all, that ¢, belongs to the class N,
([4]), i.e., the class of those Banach spaces which contain a closed,
bounded convex set such that no point in its complement has a nearest
point in the set; thus correcting an oversight of Klee. In the third
section extensions of this result are presented in two directions.
Finally, it is shown that, in a certain sense, the geometry of ¢, on
the one hand and that of separable conjugate spaces on the other,
are diametrically opposed; here we are indebted to V. L. Klee for
remarks (in a private communication) which led us in this direction.

We have tried to obtain results (one way or the other) about
m — a conjugate, nonseparable space—but have so far failed.

Before coming to the main theorem we give a preliminary pro-
position which relates various geometric properties.

ProprosITION 1. Let X be a real normed linear space and C a closed,
bounded, convex set in X. Let N denote the set of points in X\C
which have a nearest point in C. Then the following are equivalent:
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(i) N=g;
(ii) <f B 1is the closed unit ball and » > 0 then MB + C is open;
(i) of fe X*(f==0) then either f(B) or f(C) is an open interval,

Proof. That (i) and (ii) are equivalent follows from Lemma 1 of
[3. Now if N# ¢ and ae N then, for some x>0, AB+a)NC
consists of a convex, nonempty, subset D of the boundary of A\B + a
so that a closed hyperplane exists which separates AB + a and C and
which contains D. It follows that (iii) implies (i). On the other hand,
if (iii) fails, i.e., if there exists a continuous functional which attains
either its infimum or its supremum on B and C then a simple argu-
ment involving a translation of B (and possibly a reflection in the
origin) produces an a in N (cf. also [4] p. 172) so that (i) implies (iii).

2. The space ¢, is of class N, ([4]).

THEOREM 1. There exists a closed, bounded, symmetric, convex
body S in ¢, such that if feef(f #0) then either f(S) or f(B)
(where B denotes the unit ball in ¢,) is an open interval.

Proof. Let x = (£,&,&, ---) denote a typical element of ¢,
Consider the following linear functionals and linear operators on ¢,:
0i(x) = & (0=1,23,--2);
foeer =1, defined by f, = (272 275 274, ... 2=+ L.l)
Tw = (&, 88 oy onesy *0*) 5
Uz = (6 &5y &y =25 Gty =20) 5
Er =TUx = (£, 64 &, ** 0y Gony **) 5
Py = UTE* 'z = (Ekf, Euiy Eily ooy Eriy oo .)

where
Ei=2""Cn+1),(#=1238, --+).
Let
9:(x) = d;(x) + f(P;(x))
and let

S={xeecllg:@)|=1,7=123, ---}.

Since each g; is a continuous linear functional on ¢, S is an intersec-
tion of closed half-spaces and, therefore, is closed and convex. More-
over, since [|6;|| = || P;|| = 2]|f.]| = 1, if ||x|| < % then xe S. Also, if
l|&]| > 2, since there exists ¢ such that || = ||z]||, we have

19:@) | = [0:@) | = [ fo(Pi(@) | = [J2]] = [l foll 1 Pil] ]l = 2|2]] > 1.
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Thus S is bounded and has nonempty interior.

It remains to show that if fec¢F then either f(B) or f(S) is an
open interval. To see this, define A* by A*;,=¢,(1=1,2,3, ---)
and extend A* to the whole of [, = ¢} by linearity and continuity.
Then

(Az); = 0;(Ax) = gi(x)

so that the linear transformation A on ¢, can be represented by the
infinite matrix:

1 0270 2*0 2* 0 2° 0 2° 0 27 0
01 00 20 00 2°*0 0 0 2¢*-..
0601 00 OO OO OTUO 220 0
0 0 10 00 OO OO O 0 O

where the ith row has zeros except for the set
N ={u{2'@n + |n=1,28--+}
and
@ = 1, @ gim10p4y = 27",
It is readily verified that A maps ¢, onto ¢, and is one-one.
Now
S = {CBGCOI |g~»(w)l = 1y7/: 19 2’ 3y "'}
= {z| | A¥di(@) | = 1 vd}
= {»| [0:(A2)| = 1 Vi}
={x|Axe B} = A Y(B) .
Since S is bounded this shows, incidentally, that 4 has a bounded
inverse. Also
f@) = f(AA™2) = (A*f)(A7'x)
and so
f(B) = A*f(A™(B)) = A*f(S) .

Thus f(B) is a closed interval if and only if A*f(S) is a closed
interval. But those continuous linear functionals which attain their
norm on B are (finite) linear combinations of the d,s. Hence the
functionals which attain their norm on S are (finite) linear combina-
tions of the g,’s. Since these latter functionals, as I, sequences, clearly
have infinitely many nonzero entries it is obvious that the two sets
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are disjoint. This concludes the proof.

3. Two extensions. (i) The previous section was concerned with
two sets (the unit ball B and the set S) in ¢, such that the sets of
nontrivial functionals which support B and S respectively are disjoint.
Here we show that it is possible to construct a family &7, indexed
by the real numbers in the interval [0, 1), of closed, bounded, sym-
metric, convex bodies in ¢, such that if fee¢f then f attains its
supremum on at most one member of .&~.

Let a = 0-a,a,5+ -+ be a real number in [0, 1) represented as a
binary expansion which does not terminate in 1’s, i.e., &, =0 or 1
and there are infinitely many 0’s. Let f, be the element of ¢f =,
defined by

fa: (¢1y¢2y cey Py ”.)

where
5o {2—%“ if @, =0
"o if a,=1;
and let
Gia = 0; + P f, .
Finally, define
S.={recllg.))=1,1=123, ---}.

As before S, is a closed, bounded, convex set with interior and, as
before, each S, is supported by finite linear combinations of the
functions {g,./1=1,2,8,---}. If a= a' then, for some =, «, +# a, and
we can suppose that a, = 1, &, = 0. Let f support S,. Then f is a
finite linear combination of the g¢;,. Let 4, be the maximal index
which occurs in this combination. Then the sequence representing f
has a zero in the k, = 2°'(2n + 1) place. If f’ supports S,, in order
that f’ have a zero in that same place either f’ has no contribution
from g; . or f’ does have a contribution from g, .. In the first case
f' has zeros on the whole set

Nio = {21'0—1(2]{7 + 1)“6 =123, .}

and therefore differs from f, while in the second case, since k, > 1, f
has zeros on the whole set N, and again f s f’. We thus have the
desired conclusion.

(ii). The set S in the proof of Theorem 1 is similar to the unit
ball in the sense that it is the image of the unit ball under an
invertible linear transformation and hence each of its faces has finite
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codimension. We show here that it is possible to construct a set S’
with the required properties and which is, moreover, strictly convex,
i.e., its faces are 0-dimensional. With the same notation as in §2, let

p@) = llzl + ( 3 270@r) "

and let S’ = {zec,|p(x) < 1}. Since, as can be readily seen, p is a
norm on ¢, which is equivalent to the original norm, S’ is a centrally
symmetric, convex body which is closed and bounded. Further, since
g,(2) = 0 for all » if and only if 2 = 0 (this follows from the fact
that S in §2 is bounded), S’ is strictly convex; (cf. Kothe [5] p. 365).
To complete the proof we show that if 2 is in the complement of S’
then z has no nearest point in S’. Suppose, on the contrary, that
there exists x, with p(x,) > 1 and s, with p(s,) = 1 such that

[|@, — 8| = inf {|jz, — sl [se S} .
Now, since x,, s,€ ¢, there exists N such that
10;(m, — 80) | < Z %0 — 81| and [9(s0) | < |80l

for all j > N, (clearly the numbers on the right are nonzero). Let
n=2"'2k+1). If s,= (g, 0y -+, 0, ++), consider s; = (g, 7y, ++~,
0, — & +++). Clearly g;(s,) = g;(s;) for all j except j=n and j = <.
For these integers we have g,(s;)) = g.(s)) — € and g;(s)) = g.(s,) — €2~ %+,
Hence

27(g.(80)* — 9a(80)°) = 27" — 27™"eg,(s,)
and
27%(gi(80)* — gi(80)?) = 27FHEIIEE — 27k leg(sy) .

We can assume that g;(s,) is positive (otherwise replace ¢ by — ¢).
Then, since g,(s,) ~— 0 as n — o, choose k so large and ¢ sufficiently
small so that

a8 n=2""C2k+1) >N

(b) e <illsll

(@ &< 3llam— sl

(d) 27mrhrie 4 2787k le 4 2R g (s0) | < 27%g(S,)
Then p(s;) < p(so) = 1 but ||z, — si]| = ||z, — &[] = inf {||, — s]| |se S}.
This is clearly absurd since #, cannot have a nearest point which is
interior to the set and the proof is complete.

4. How to support a family. It was shown in §3(i) that in
¢, it is possible to construct an uncountable family of closed bounded
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convex bodies such that no linear functional supports more than one
of them. In contrast we have the following theorem.

THEOREM 2. Let{C, C, -+, C,-++} be a countable family of closed
and bounded sets in a separable Banach space X which is the conjugate
of some Bamnach space Y. Let S denote the set of points y in Y with
the property that for each © =1,2, «-+ there is a c;€ C; such that

sup Ky, c>:ceCi} =<y, ¢t
Then S is a dense Gs.

Proof? The set S; of all ye Y for which sup {Ky,¢)>:¢ceCy} is
attained is, by a result of Asplund (cf. Theorem 3 and proof of
Proposition 5 in [1]), a dense G;. It follows that S = 7S; too is a
dense G,.

To show that countability of the family {C, C,, -++} in Theorem
2 is essential we bring the following

PROPOSITION 2. To every continuous linear functional u on [,
with ||u]|] =1 there is a closed and bounded convex set C such that u
JSails to attain its supremum on it.

Proof. It suffices to show that a C as required exists for each
% = (U, Uy, »-+) € m for which a natural number k exists with ||u||=
%] = 1 as the unit ball may clearly serve as C for all other w of
norm 1. Clearly, if C satisfies the conclusion for a given % then —C
does for —wu; thus we may assume that %, = 1. Now the sequence
{%issy Wissy +++} contains a subsequence {u,, %,, +-+} which is either
nonincreasing or nondecreasing. The proofs being similar in both
cases we assume that

Uny = Upy = 20

i.e., the subsequence is nondecreasing.
Let 4 = {z®, 2®, «-.} !, be defined by setting

1—L tori=tk
x(m) = m .
' 1 for 7 = n,,
0 otherwise

and set C = co A. Suppose there is a

! Here, and in the sequel, we find it advantageous to use the customary <{z.f>

for f(x).
2 We are indebted to the referee for suggesting this proof.
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= (zls Ry ** 'y Ri—1y By Ry ** ') eC

at which % attains its supremum. Then, as can be readily seen,
Bi=2 =0 =2_,=0>2.2, =1 and 2z =1. Since z,, # 0 for
some natural number M, if 6 = |z,,|/2M then ||z — || = 0 for all
T = S nx® with A; = 0 and 32\ = 1. Indeed,
= A

lz — | = |2 = Tayt = ”M’_ ny

M

so that we may assume that X, = % [2., |- But then

lz—2)|=1— 331(1——1—)&: rzl%z*ﬁfz'%'za.

It follows that z¢ C so that % cannot attain its supremum on C, as
asserted.

5. Concluding remarks and problems.

1. We have already pointed out that the behaviour of m in this
respect is unknown.

2. A procedure first given by Day [2] was shown by Rainwater
[6] to yield a locally uniformly convex unit ball in ¢,. It is possible
that a similar procedure applied to our construction of the set S’ in
§3 (ii) will give a locally uniformly convex set with the same
properties.

3. It is unknown whether, given any closed and bounded convex
body S, in ¢, it is possible to construct a second set S, such that
no functional supports both S, and S, (i.e., whether Theorem 1
remains true under any equivalent renorming of ¢,).

4. The above construction can be used in a more general ¢, (T).

5. The definition of the set S in Theorem 2 can be modified so
as to obtain a stronger conclusion. Indeed, without changing the
proof, one can require that each element ye S strongly expose each
of the sets C;; i.e., whenever {¢/": n =1,2, .--}CC; and {y, ¢/">—
Ly, ¢,y then ¢ —c¢ (it =1,2, ---).
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