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H. Schubert introduced a numerical knot invariant called
the bridge number of a knot. In particular, he classified the
two-bridge knots and proved that they were prime knots.
Later, Murasugi showed that if K is an alternating knot then
the matrix of K is alternating. The latter is true of two-
bridge knots. The purpose of the following is to give a some-
what unusual geometric presentation of two-bridge knots from
which it will be seen that they are alternating knots.

By a knot we will mean a polygonal simple closed curve in E\
Let C denote the unit circle in the xy plane and / a homeomorphism
from C to a knot K. We will assume that if is in a regular position
with respect to a projection into the y = 0 plane [1] and that those
points of K which do not have unique images will be the crossing
points of K. Let /-ι(αx), f~ι(aύ, , f~\a*) be the points of C ordered
clockwise where at are the crossing points of K. If K has a presenta-
tion with an associated / such that α< is an overcrossing point if and
only if i is odd, then K is said to be an alternating knot. By a two-
bridge knot we mean a nontrivial knot in Ed which can be represented
by two linear segments through a convex cell and two arcs on the
boundary of the cell.

THEOREM 1. If K is a two-bridge knot, then K is an alternating
knot.

Proof. We will start with K in a two-bridge representation (Fig.
la) and apply several space homeomorphisms to E\ so that the resulting
representation of K is described by an arc 'monotonely' approaching
the center of the cube and four linear segments (Fig. lb). The proof

Figure la. Figure lb
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will be completed by proving a lemma that shows that this representa-
tion is an alternating representation.

First assume that the knot K is respresented by two arcs Ai =
{(x, y,z)\x = i/3, y = 1/2, 0 ^ z ^ 1}, i = 1, 2, through the cube I =
{(», y, z) 10 ^ x 5j 1, 0 ^ y 5g 1, 0 ^ z ^ 1} and two connecting arcs on
the boundary of J, i.e. B, and B2. Furthermore, we can assume that
I?! U B2 does not intersect the planes y = 0 and 7/ = 1 (Fig. 2).

Figure 2.

The first homeomorphism ht will move the arc Bt to an arc starting
at the boundary and monotonely approaching the center of I so that
it will not cross itself (in the y direction). hL will be constructed by
the following five steps:

(. 1) Move Bγ on the boundary of /, leaving the A{ fixed, so that
no segment of Bι lies on the simple closed curve defined by (boundary
of /) n (the plane y = 1/2).

(2) Define L to be the cone from the center of I to Bt and define
Ot to be the annulus {(x, y, z) \ max (x — 1/2, z — 1/2) = 1/2 — t, 0 ^ y ^
1}, 0 ^ t ^ 1/2.

( 3) From (1) we have L Π (At U A2) equal to a finite set of points.
Hence define ε so that the interior of \Jε

0Ot f] L contains no point of
A, U A2.

( 4 ) Let xl9 , xm be the vertices of BL ordered from Aι to A2.
If 1 <̂  fc ̂  m, let ί4 be the point common to OAε/w+1 and the linear
segment joining xk to the center of I and let ίC+ 1 = Oε ΓΊ A2.

( 5 ) L Π Uo Ot is a disk whose intersection with K is B^ Hence
the vertices x[9 x[, , x'm, x'm, -•-, xx determine a simple closed curve
which bounds a disk in (Jo Ot whose intersection with K is Bt. Move
B1 to a?i, £c[, , x'm, xm without moving Aγ U A2 (J 5 2 . Then move
x'm+ιxmx'm to the segment x'm+ιx

f

m without moving the rest of K (Fig. 3).
The points of hJ^B^) approach the center of / in the sense that

if x'iy x'j are vertices of hjβl) such that i < j and x\£Ot., XjSθt., then
U < tj. Hence if h^K) is projected in the y direction, h^B^ will not
cross itself.
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As K{K) Π (boundary of I) = B2 (J \%i\, we can find a homeomor-
phism h2 such that h2 is fixed on Aι U {A2 — \x'm+1, xm\} U K{B^ and h2

takes B2 to an arc on the simple closed curve formed by (boundary
of I) Π (plane y = 1/2).

Next, we will define a homeomorphism h3 which will move h^B^
so that the crossings of h^h^B^) will alternate with respect to a pro-
jection in the y = 0 plane and h^hJ^B^) will still approach the center
of I monotonely. Let bx, b2, •••, bry be the crossing points of ht{B^)
ordered from A, and let E1 = A, f] {(x, y, z) \ z ;> 1/2}, E2 = A, Π
{(&, y,z)\z^ 1/2}, and E3 = A2 — [xm, xm+1]. A two valued function #
may be defined on {6J so that (̂6̂ ) = 0 if 6< is an over-crossing and
#(&;) = u if bt is an undercrossing (in the ^/-direction). Assume that
two successive values of g are equal and then there are essentially two
cases; i.e., case a, bi and bi+ί both lie above (or below) Eί9 E2, or Ez,
and case 6, bi lies above (or below) Eι and bi+1 lies above (or below) Ek

with I Φ k.
If case a holds, then there exists t' and ί" such that Uί '^^ί" Ot

contains only b{ and bi+1 as crossings of hJi^K). There is an arc a,
such that (1) <x c U ί ' s w Oβ (2) α has endpoints ^(BJ Π 0^ and
h^Bi) Π 0^,3) α does not cross El9 E2 or E3 and (4) α monotonely
approaches the center of /. Let f4 be a space homeomorphism moving
KiB,) Π Lit'****" Ot to a and leaving ^ U ̂  U ̂ 3 and E'3 - [\Jt^t> Ot]
fixed (Fig. 4).

Figure 4.

If case b holds, define t\ t", and a as above, except a will cross
the third E segment once in the same way that hJ^B^ crosses the
other two. Define fx as a space homeomorphism taking h^B^ Π
Ut'****" 0* to a and leaving Eί{jE2\J Ez and E13 - [Uί^^ί" 0J fixed
(Fig. 4).

Hence if hJi^B?) is not alternating then there exists a sequence
of {/J such that fhfh / ^ A ( # i ) is alternating. Let h3 = Λ/^ -/<fc.
Then hJiJi^K) is alternating by the following lemma.

LEMMA 1. Let K be a knot in regular position with respect to
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the y = 0 plane, and B a subarc of K such that (1) B does not cross
itself, (2) every crossing of K has exactly one crossing point in B,
and (3) the crossings of B alternate, then K is an alternating knot.

Proof. It can be assumed that B — {{x, y, z) | 0 ^ x ^ 1, y = 0,
z = 0} and B satisfies conditions (1) through (3). If K is not an
alternating knot, then there are two successive crossings of K, b19 b2,
such that both b1 and 62 are overcrossings (or undercrossings). Let
A be the arc joining bι and δ2 which has no crossings in its interior
(Fig. 6). As the crossings of B alternate, A cannot lie in B.

Figure 6.

A cannot contain both endpoints of B. If A contains neither
endpoint of B, define C to be the simple closed curve containing A,
the subarc Bf of B with endpoints below (above) b^ and b2, and the
two vertical segments joining bL and b2 to their respective undercrossing
(overcrossing) points. If K contains a single endpoint of B, define C
to be the simple closed curve containing A, the subarc B' of B con-
taining one of bx or b2 in its interior and having as endpoints the other
b{ and the endpoint of B in A, and the vertical segment joining the
bι endpoint of B' to A.

As the crossings of B alternate and bt and b2 are both overcrossing
points, there is an odd number of crossings on B' between bι and b2,
and hence an odd number of crossings on C. C (J K is the union of
three simple closed curves, C, C19 and C2(C2 is possibly degenerate).
But C1 U C2 must cross C an even number of times, contradicting the
fact that C is crossed an odd number of times.
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