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This paper considers a class of simply connected Riemann
surfaces which are shown to be of parabolic type. Infinite
product representations are obtained for both the uniformizing
function and its derivative.

The class of surfaces. For each integer n =1 let [ay,—;, Dsuil
and [b,,, a,,] denote closed intervals of the real line satisfying 0 <
Ogey < byyy < by, and b,y < by, < @y, Let S, denote a copy of the
w-sphere. Slit S, along [a, b], slit S, along both [a,,_,, b,,—,] and
[0.., @.], and slit S,.., along [a.,.i, by and [bs, a.,]. A surface F
belonging to the class is constructed by joining S,,., to S, along
@21y bsi] and S,, to S,,., along [b,,, a,,] with the intervals forming
first order branch lines.

The uniformizing function. F is a simply connected, open Riemann
surface and is thus either parabolic or hyperbolic. There is a unique
analytic one-to-one mapping f(z) which maps {|z] < r < «} onto F
and satisfies f(0) = 0€ S, and f/(0) = 1. An argument similar to that
in [2, p. 1137] shows that f(2) is real if z is real. For notation let
F©@) =0€e8,, f(1) = €8, fla) = a, and f(B:y) = b.. The image
of S, under f~}(2) is a region containing the origin and bounded by
a Jordan curve C, which is symmetric about the real axis. For n >1
the image of S, is an annular region about the origin bounded by two
Jordan curves, C,_, and C,, each symmetric about the real axis. For
n =1, C, intersects the real axis at «, and B, only. Furthermore,

Brrr < B <V < 0 < Ay < 030 < Vo < Ay < Vonas < Oy < Wy o

The closed surfaces and rational functions. Let F, denote the
surface formed from the first 2n sheets of F with the cut along [b,,,
a,,] on S,, deleted. F', is an elliptic surface so there is a unique
rational function R,(z) mapping the z-sphere one-to-one and onto F,
which satisfies R,(0) = 0€8S,, R,(0) = € 8,, and R,(0) = 1. For
notation let R,(0,,,) = 0€ S,, R.(71,,) = = € Sy, R,(4,,) = a; and R,(B;..) =
b.. Also, throughout the following the notation 1 — z/a, = af, 1 —
2/Bs = B, 1 — z/v, =vF and 1 — 2/, = 0F is used. Then

R.(&) = [2/750] TL 108,0/72.0] 05
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and
R :kIj [t B (VE )]

since R,(z) and R,(2) must contain exactly these factors. The zeros
and poles of R,(z) and the points corresponding to the branch points
of F, are real and their ordering is similar to that for f(z).

LemMMA 1. F s parabolic.

Proof. Let D, be the plane with (—<o, 8,,_,,] on the real axis
deleted. Let 4, be the domain in the plane which is the interior of
the curve C,, excluding the segments [B.,, B:—] and [7,,, @,]. Then
v.(2) = fY[R,(2)] maps D, onto 4,. An argument similar to that in
[2, p. 1138] shows that F' cannot be hyperbolic so that F' is parabolie.
Thus f(z) maps the plane onto F. Furthermore, the sequence {D,}
converges to its kernel which is the plane.

LEMMA 2. R,(z) — f(2) subuniformly (uniformly on compact sub-
sets) in the plane as n— oo. Furthermore, 0y, — 0py, Vin — Viy Ay —
&, and By, — Br a8 N — oo,

Proof. Since the sequences of domains {D,} and {4,} converge to
their kernels which in both cases is the plane then the sequence
{f'[R.()]} converges subuniformly in the plane [3, p. 18] to the
identity. Hence R,(z) — f(2) subuniformly in the plane. It follows
from Hurwitz’s theorem that 0, — 0x, Vi,n — Vi, Qi » — @, and B, —
Br as N — oo,

LEMMA 3. The infinite product
T1G) = (7% I (52/71)
converges subuniformly in the plane.
Proof. Since 6, — « and v, — o« as k— o then if R > 0 there
is an integer n, = n,(R) > 1 such that for £ = n, — 1 both 6, > R and

Y. > R. Thus, log [6}/7F] is defined for |z| < R. Since for k =1,
0 < 0z < Var < Yot < Ogesry then for n 2 0, p = 0 and |2| < R,

ng+n+p L ny+n+p
S og (2| = |3 @ m) S W — /o)

S S (Rfousn-d = Rf@uns — B) -
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Because R/(0,,+4—, — K)—0 as n— oo then the uniform Cauchy criterion

is satisfied in |2| £ R by the infinite series 3.7 ., log [0}/vi]. This is
sufficient for II(z) to converge subuniformly in the plane.

LEMMA 4. II(2) = f(?).

Proof. Because v,,—7; and 9, — 0, as n — o there exists B >
0 and N > 0 such that if » > N and |2] = R the quotient R,(2)/11(2)
is nonzero and analytic with value 1 at z = 0. Thus, using the

principal value of the logarithm,

log [R,(2)/I1(2)] = log (v¥/7i.) + i‘, 2™ wherefor2 < p=<2n -1,
on = cu(m) = L[ 1/05,, + 5 (U7 — 107 — 172 + Li0E)

+kg A/vz = 1/o7) —2:2;.;(1/7km,n - 1/,3,7,%)],

Because
gp(l/’ﬂf — 16 | < 1/8m,
and
S A, — 108 | < o7

then |e,(n)| < |1/07.,]

+ 3 W = 1oE — Upa + 108

+ 1052, + 1/07,0

This bound for ¢,(n) has limit 2/67, as n— - and 2/67,— 0 as p—
co. Hence ¢,(n) — 0 as n— . The convergence of {log [R,(2)/1I(?)]}
is subuniform in the plane and v,,— v, as # — . Thus, as % — oo,

lim log [R,(2)/I1(2)] = log [f(2)/1I(2)] = 0 so that f(z) = II(z).

LEMMA 5. The sequences A, = >3'1a,.,, B, = 3357 1/8,., and
C. = X" 1/, are bounded.

Proof. There is some R > 0 such that R,(z) = 0 if |z2] < R and
thus,

log R.(2) = g (™ /m) ig(z/vzzn — 1ap., — 1/87.) .

Let v = v, denote the coefficient of z in this series expansion. For
n=zland k>1,0<v,<a,,andfork=1,3,,<0sothat, 2/v,, —
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e, — v, = B, + 235 A/ay,n — 1Y) — 255 17, < B, <0. As n—
oo, log R.)(z) — log f’(z) subuniformly in the plane and thus,

— oo < lim(@/v,, — /o, — v,) < lim inf B, < 0.

Hence the sequence {B,} is bounded. The remaining two sequences
are bounded below and the inequalities C, < v, + l/a,,, — 1/7,., and
A, <C, + 1/a,, — 1/v,, show they are bounded above.

LEMMA 6. The series 3.1 1/Buy 2ie /ey 200 Lo, and 335, 1/0,
are convergent.

Proof. Each of these series is monotone. Using Lemma 2 and
the notation and results of Lemma 5 it follows for p = 1 that as n — o,

— oo < liminf B, < limgj,l/ﬁ,,,n = kg 1/B, < 0.

Thus the first series converges. >,r—,1/7, converges since it is monotone
increasing and for p =1 and 7 — o,

31/v, = lim kz 1%, < lim sup C, < o .
k=1 =1

The remaining two series have positive terms and are dominated by
convergent series since for £ > 1,0 < 1/0,,, < 1/a;, < 1/v,. Thus, they
also converge.

LEMMA 7. The infinite product
Q@ = 11 [ 8t/072)]
converges subuniformly in the plane.

Proof. This follows from Lemma 6.
. .As a further consequence of Lemma 6 both Q(z) and 77(z) may also
be expressed as a quotient of products.

LEMMA 8. f'(2) = Q(z) exp (62) with & real.

Proof. For some R>0 both Q(z) and R,(z) are analytic and non-
zero in |z| < R. Hence, for |z| < R,

log [B()/Q@)] = 3, (z*/m) | 33 L,

-l o on—1 .
— et + 3 1/8 — 3 1/BE. — 35217
+ S
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From Lemmas 5 and 6 there exists M > 0 such that for n = 1
2:2:1111/“]9,71, < M and ki:‘,ll/ak < M.
Also, for k=1 and n = 1, a0, < &4, and «;,,, < &y11,, SO that
kla, < g 1o, < M
and
kjecy,, < 2:2;:1/%,% <M.

Thus, for p =1, |, Yap — S5t 1ar, |

< kf} (M/k)™ + i (MJl)y™ = 2M™ i A/l .

This last expression has limit zero as p-— o provided m = 2. Thus,
for m = 2, it follows that as n — oo,

lim [i ap — zfil/a;”,n]
k=1 =1
— lim [i 1ar —zill/a;:zn] ~0.
k=p

k=p

Similar arguments show that as # — o and provided m = 2,
tim [ £ 180 — S 1/8r. | = 1[5 17 — S| =0

Hence, if 6 denotes the limit as n — o of the coefficient of z in the
expansion of log [R,(2)/Q(2)] then as n — oo, 0z = lim log [R,(2)/I](z)] =
log [f'(2)/Q(z)] so that f'(z) = Q(z) exp (6%).

LEMMA 9. 0=0.

Proof. Since Q(z) is composed of cannonical products of genus
zero then for ¢ > 0 there exists R > 0 such that if [z] > Rand 0 < p <
larg z| < 7 — 0 then |Q(z)| < exp (¢]2]) and 1/|Q(2)| < exp (¢|z[). Thus,

exp 0. Z () — ¢lz)) = [f'(2)| < exp 02 (@) + ¢lz]) .

Let V, and V, denote open sectors in the first and second quadrants,
respectively, with vertex at the origin and sides contained in the open
quadrant. If ¢ < 0 and ze V, then <Z(2) > 0 and there exists ¢, > 0
such that for |z] > R, | f'(?)| = exp (¢,|2]). Let r, denote the distance
from the origin to the portion of the curve C, in V, and let z, and
{, denote the intersection of C, with the sides of V, where 0 < 8 =
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arg{, — arg z,. For n sufficiently large,

Dsnts — Aopyy > f(C2n+l) ~ J(Zens1)
= {7 r/@)1dz] 2 br.exp (5720

22n+1
where the integral is along C,.... If n— oo then 07r,, exp (¢,7:,) — o
and since a,,,, > 0 then b,,., — oo.

However, if ze V, then #(z) < 0 and there exists ¢, > 0 such
that for |z| > R, | f'(2)| < exp (—4.|2|). It follows that f(2) is bounded
in V.. If ze V, and ze C,, then 0 < b,, < f(2) so that {b,,} is bounded.
This is a contradiction since b,,., < b,,. Thus 6 < 0. A similar argu-
ment shows 6 = 0 so that 6 = 0.

THEOREM. A Riemann surface belonging to the class described is
parabolic and a uniformizing function f(z) for a member of the class
has the representation

F@ = @) 1 0t/7) -
The derivative has the representation

£@ = 11 ez g2/ -
For k=1,

Bt < B <71 <0< Wgpey < 0gpp < Vot < Aoie < Vators < Oy < Mgy o
Furthermore, >,v_, Lja,, St 1/Be, S 1/7, and S5, 1/6, converge.

The author wishes to express his appreciation to Professor H. B.
Curtis, Jr. for his suggestions.
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