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In the direction of the total-effectiveness of a (N, p,)(C,1)
method, results concerning the summability of a Lebesgue
Fourier series and its conjugate series by such a method are
known. Supporting the observation that generally bounded
variation is the property associated with absolute summability
in the same way in which continuity is associated with ordinary
summability, the absolute total-effectiveness of a (N, p.)(C, 1)
method is established in the present paper and the corres-
ponding effectiveness of the (C) method is deduced as a parti-
cular case.

Throughout the present paper we use the definitions and notations
of [7] without further explanation. The following additional notations
for the conditions concerning {p,} are also used.

(1.1) {p,}e RS means: p,>0,9,=0 (n =1), {R,}e BV and {S,} e B;

(1‘2) {pn} € MS means: pn > Oa pn+1/pn é pn+2/pn+1 é 1 (’n g O) and
{S.}e B;

(1.3) {p,}e NS means: p, >0, p, =0 (n = 1), {R,}e B, {S,} € B, {p.}
and {4p,} monotone .

As we shall see in section 5 of the present paper, MS < NS, but
no interrelation is known between the sets of conditions RS and MS
or NS.

Using a result due to Mears [15], Kwee [13] has proved that the
following conditions:

(1.4) po = o(|P,|), n— o and i P, Py

<L oo,
w=1 Pn+y P’n-{—»—-l

for all v > 1, are necessary and sufficient for the absolute regularity
of the (N, p,) method. It may be observed that Lemma 1 and Lemma 2
of the present paper imply a fortiori that the (N, p,) method is
absolutely regular, under each of the conditions: {p.}e RS, {p,} e NS
and {p,} e MS.

Concerning the absolute Fourier-effectiveness, we have the fol-
lowing.

THEOREM A. If {p.}e RS, then the (N, p,) method is absolute
Fourier-effective.
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THEOREM B. The (C, 6) method is absolute Fourier-effective for
every 6 > 0.

As pointed out by the present author in [4], Theorem A is an
apparently lighter but actually equivalent version of results of Pati
[17]. Theorem B emerges from Bosanquet [1] and Bosanquet and
Hyslop ([2], Th. K, with & = 0) and is known to be the best possible
in the sense that it breaks down if 6 = 0. It may also be mentioned
that Theorem B is a special case of Theorem A.

| F'|-effective part of Theorem B may also be deduced as a special
case of the corresponding effectiveness of the (N, p,) method proved
in [6] and [5], under the hypothesis: {p,} ¢ MS or more generally that
{p.} € NS.

The following result emerges from ([10], Ths. 1, 2 and 3), when
we observe that its | F”|-effective part is deducible from the proof of
Theorem 1 in [10], while its absolute Fourier-effective part, follows
from the result of Theorem A and the absolute regularity of the
(C, 1) method.

THEOREM C. If {p,} e RS, then the (C, 1)(N, p,) method is absolute
total-effective.

However, in the direction of the absolute total-effectiveness of the
(N, p.,)(C, 1) method!, we have only succeeded in proving the following
(cf. [9]).

THEOREM D. If {p,}€ RS, then the (N, p,)(C, 1) method is |F\|-
and | F"|-effective.

2. The main results. That under the hypothesis: {p,} ¢ MS, it
is indeed possible to prove a more powerful effectiveness of the
(N, p,)(C, 1) method than that obtained in Theorem D is demonstrated
by our Theorem 2, where we succeed in establishing absolute total-
effectiveness of such a method. The absolute total-effectiveness of
the (C,1 + 6) method (6 > 0), which emerges from Bosanquet [1],
Bosanquet and Hyslop ([2], Th. 1 for « = 0 and Th. 5) and Hyslop
[11], reduces to a special case of our Theorem 2.

We first prove the following which corresponds to Theorem D.

THEOREM 1. If {p,}e NS, then the (N, p,)(C, 1) method is | F\,|-
and | F’|-effective.

1 Tt is known [18] that the matrix (C, 1)(N, p») # (N, px)(C, 1), unless (N, pa) is a
Cesaro matrix.
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Using the result of Theorem 1, we prove:

THEOREM 2. If {p,} e MS, then the (N, p,)(C, 1) method is absolute
total-effective.

In view of the result of Das ([3], Th. 5) that if p, > 0, p,+./0. <
pn+2/pn+1 é 1 (n 2 O), then

(N, 2)(C, D] ~ [N, P,| ~ [(C, )(N, p.)] ,

the absolute total-effectiveness of the (&, P,) and the (C, 1)(N, p.)
methods, under the hypotheses: {p,} e MS, follow from the result of
Theorem 2.

3. Some preliminary results. We need the following lemmas
for the proofs of our theorems.

Lemma 1. If {p,}e RS, then the (N, p.) wmethod is absolutely
regular.

Lemma 1 is included in Lemma 8 of [8].

LeMMA 2. If p,>0,p,=0 (n = 1), {p,} is monotone and {R,} €
B, then the (N, p,) method is absolutely regular.

Proof. Since {R,} e B implies that p, = o(P,), » — o, in order to
prove Lemma 2, it is sufficient to show that for all vy > 1

_221&_ _ pn+»

> | P P & P
3.1 I — n_ n—1 — n
3.1 2 5 5 = Y P P

n=0 Pn-%—v Pn+»—1 n=0 ntv—1

=K.

The case in which {p,} is monotonic nonincreasing, (3.1) follows
directly from Corollary 1 due to Mears [15].

Since {P,} is positive monotonic nondecreasing, we have by suit-
able changes in orders of summations (cf. [9], proof of Lemma 10)

) oo n+y—1 A
2= Z"o Piy: L k—Z;L A<%)
=5 (2| & 52
o k
+3 A<%> > pit L
=5 g;;il 521 : PP

i
PE
+
[N
© %
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say. We now assume, that {p,} is monotonic nondecreasing and there-
fore

2y

IA

v v—1 1 y—1
kgo (Dr+r — Dr) + kgo Dit1 Bt

Py—-l Py—-l
éKRy+K§K’

by virture of the hypothesis that {R,} € B, which implies that P,/P,_,=
01), n — . To prove that 3 < K, we observe that by an applica-
tion of Abel’s transformation,

” _1_ _ % (Ris)®
)2 kzzi‘p Pk (pkﬂ pk) + v kz:‘i (k + 1)2

n—1 k 1 n
<y Pen = . X
=v3 PP 2 (P = Pp) + ¥ P 2 (Puvs — Pu) +

n—1L R ) R
< K (R Bk
=S

as n — oo, by virtue of the conditions: {p,} is monotonic nondecreasing
and {R,} € B. Thus, ¥} < K, and we complete the proof of (3.1) in
the case in which {p,} is monotonic nondecreasing. This completes
the proof of Lemma 2.

The condition {R,} € B is automatically satisfied if {p,} is nonnega-
tive and nonincreasing and thus, we observe that the present Lemma
2 extends the result of Corollary 1 of [15].

LEMMA 3. If {p.,}e NS, then uniformly in 0 < t<=w

. 1

sin (n —k + E>t
1

— k=

n + 5

=K.

(3.2) ) S (Pup— P

1
PnPn~1

Proof. The proof of (3.2) is similar to the proof of the following
as given in [5].

n—

(Pnplc_pnpk)"Sin(—n_'—k")il éK-
n— k

L
k=0

n=1 PnP'n—~1

LEMMA 4. If 6(t) e BV(0, ) and {p,} € NS, then {t,(w)} € BV, where
t. (w) is the nth (N, p,) mean of {u,} defined by

Uy = S:ﬁ(t){sin (n + 1)t/sin<—;—t>}dt .
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Proof. Following the proof of a theorem in Pati ([16], p. 156),
we observe that if 6(t) e BV(0, 7}, then in order to prove that {t,(u)} e
BYV, it is sufficient to show that (3.2) holds uniformly in 0 < ¢t = 7.
Thus Lemma 4, follows from Lemma 3.

LemMmaA 5. If 6(t) e BV(0, &), then {v,} € BV, where

v, = ~ i 1S ﬁ(t){sm( (n + l)t\/sm ——t)} dt .

Proof. Writing

Uy

fl

pras 1 2 Soﬁ(t){sm e+ t/sm —t>}dt
we observe that under the hypothesis: 6(t) ¢ BV(0, 7), the result of
Lemma 5 follows from the proof of |F|-effective part of Theorem
B, when we appeal to a well known inclusion relation for the absolute
(C) method.

LEMMA 6. Let t.(s) denotes the nth (N, p,)(C, 1) mean of S5,
and p, > 0, Dpis/Pn = Dure/Pus S 1, for all m = 0. Then {t.(s)}e BV,
iof and only if
1 k

o 1 n
- | =K.
= nP, 2P "k+1rz=om

Proof. We have by a change of order of summation

(3.3) tu(s) =

—0.(8) ,

where ol(s) is the rth (C, 1) mean of .7 ,. But, by a well known
identity due to Kogbetliantz

k
(3.4) oi(s) — o)} = -—— + T 2T
In view of (3.3) and (3.4), Lemma 6 follows directly from Theorem 6
of Das [3].

Lemma 7. If {p.} is nonnegative and nonincreasing, them for
0 asb= 0,0t and for any n and a,

b

> prexpi(n — k)t| < KP. .

Lemma 7 is contained in [14].
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Lemma 8. If p,>0,9,=0 (n = 1) and {R,} € B, then the condi-
tton: {S,} € B implies that

P> ———=<K, n=2012 -
Z"(k—l—l)Pk

The proof of Lemma 8 is contained in [4]. A slight modification
in the proof given in [4] shows that the result of Lemma 8 holds,
even without the hypothesis: {R,} € B

4, Proof of Theorem 1. (I). |F,|-effectiveness: Denoting by
o.(L(x)), the nth (C, 1) mean of L(x), we have

o\ (L(w)) = ﬁg ¢(t){§; sin (& + )t/sm —2—t}dt
1

;T.Z_l____)g ¢(t){s1n —(n + 1)t/sin ?t} dit .

Writing 6(t) = @,(t)/sin (1/2)t, we have on integration by parts

I

o\ (L(x)) = %{sin Ly 1)n}2_§1_g”a(t){sin (n-+1)t/sin —;—t}dt

(4.1) + _(—1—}——1—)5 0(t) cos %t{sm —(n + 1)t/sin —z—t} dit
= w, + Ku, + Kv, ,

say. In view of (3.3), in order to prove the |F|-effectiveness of the
(N, p,)(C, 1) method, it is enough to show that {¢,(w)}e BV, {t.(v)}e BV
and {¢t.(w)} e BV, where t,(u), t,(v) and ¢,(w) are the nth (N, p,) means
i {w,}, {v.}, and {w,}, respectively.

Since x is a |F,|-regular point, {t7'@.(t)}c BV(0, ) and that
{t.(u)} € BV, follows from Lemma 4. Similarly, {¢,(v)}e BV, by virtue
of Lemmas 2 and 5. Finally, we write (cf. [9])

wn_w%—l:an+8%7

a, = (— 1)”A/ —1— Asm{(% }/Kn —;—

2

—A/{ (n + _é_ (n + 1)} (n even) ;
1
2

where

B’I’L

—aj2nfn + ) (n 0dd) ;

and A = @,(n)/x.
Thus, in order to show that {f,(w)}e BV, it is enough to show
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that {t.(@)}e BV and {t.(8)} € BV, where ¢, (@) and t,B) are the nth
(N, p,) means of >.2 ,«, and >\7., B, respectively.
Now, we have

tn(a) - tn—l(a) =

P,},H kz; (Pupr — PPt
and therefore {t,(«)} € BV by virtue of (3.2).

That {t.(8)}e BV, follows from the absolute convergence of
S o B. When we appeal to the result of Lemma 2.

This completes the proof of | F|-effective part of Theorem 1.

(D). | F'|-effectiveness: Denoting by oL(L'(z)) the nth (C, 1) mean
of L'(z), we have

_ 1
w(n + 1)
1

4.2) - ——Z;SZ{q/r(t)/sin-%—t}{sin (n + 1)¢/sin -;—t}dt

oL (L/(2) = — S:w(t)%{sin %(n + Difsin %t}zdt

+ Em:lTl)S:{q/f(t)/tan %t}{sin %(n + l)t/sin%t}zdt .

Comparing (4.2) with (4.1), and observing that {y(¢)/t} ¢ BV(0, ),
since x is |F’|-regular, it follows from Lemmas 2, 4 and 5 that the
(N, p,)(C, 1) method is | F"'|-effective.

5. Proof of Theorem 2.(I). |F.|- and |F"'|-effectiveness: We
observe that if p, > 0 and 9,.1/Pn < Duse/Pnr < 1, for all n = 0, then

n + Dp, £ P, i.e. {R,}e B and {4p,} is monotonic nonincreasing, for

(see [12])
APy — ADpir = Do — 200y + Dpis = (VD — V'Dpra)? = 0

and therefore {p,}e NS. Thus |F.| — and |F’|-effective parts of
Theorem 2 are included in Theorem 1.

(II). | F,|-effectiveness: Since

nB,(x) = —_27; S:w(t)(% cos m)dt

and S“t-w(mdt < K, by virtue of the hypothesis that » is a |F,|-
0

regular point, it follows from Lemma 6, that in order to prove the

| F',|-effective part of Theorem 2, it is sufficient to show that uniformly

mo<t=srx
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. = _ - t K
(5.1) b tng‘l%P,ﬂ kzzlopn kk-l—ldt%cosr
Now we write
<t L ipn_k L i?"sinfrt‘
nsrc ’nP,ﬂ k=0 k—]—lr:l
1
sin k+—>t
1 " 1 d ( 2
+ 2 %
Zp | &P T ia gy
:21+22,
say. But, we have
(5.2) Z<KtZPank<K

By virtue of Lemmas 7 and 8, we have

1

(k + 5)

E+1
” 1 1
kzz g 1s1n (lc + —2—> I
<kp.y Lo m s LS L osin(k+ L)

>t nP, a>c nP k=0 E+1 2
+ Kt >, —— i Dt 1 sin(k + —1—>t}
n>c 'nP k=[n/2] k41 2

é K + 221 + 222 b

2, =K Z‘ Pn Zil‘ kcos(k—i——;—)t

1
+ Kt
(5.8) =up, np,

say. Since p,., < p,, for all » = 0, we have by Abel’s Lemma
. 1
sin( k —>t
v ( + 2

3, < Kt S, Poist pax kZOk——f—l_—

w>c NP, 0sv<n/2]

(5.4)
< Kt 3, _zR["m =K,
n>7t N,

since

) {sin <k + %)t}/(k + 1)‘ <K

and {R,} € B, automatically.
Again by Abel’s Lemma and Lemma 7, we have

2 Throughout [#] denotes the greatest integer not greater than z and = = [2z/t].
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v

Y, < Kt 3, max S, Pui Sin (k + %)t’

2>t 2P, (n2isvEn | k=(nf2)

(5.5)

<K'P.Y L <K,
>1")/LP

by virtue of Lemma 8.

Combining (5.8)-(5.5), we prove that ¥, < K. This result com-
bined with (5.2), leads to (5.1) and we thus, complete the proof of
| F,|-effective part of Theorem 2.

(III). | F*|-effectiveness: We have by integration by parts

nB.(x) = %W(tm sin nt dt

= gq/r(ﬁ)(l — COS NT) — ES:(l — cos nt)dy(t) .
T T Jo

Since « is a | F'*|-regular point, we have S:de(t)l < K and it follows
0

from Lemma 6 that in order to prove |F*|-effectiveness of the
(N, p,)(C, 1) method, it is sufficient to show that uniformly in 0 <
tsnw

M=
3

(5.6) 5 -3 -3 74l — cos (r — 1)t}i <K.

3
=
I
A
|
=
BN

But, we have

i rd{cos (r — 1)t} = l(l — cos kt) + 2sin i3 i <r——1—) sin <r—l>t .
=0 2 2 =1 2 2

Thus, to prove (5.6), it is enough to show that uniformly in 0 <
t=mw

(6.7 I sin% ni:]l 2 é,(’r - %> sin (1" - %)tl <K
and
(5.8) syl s Pur <,

nl’}’l,Pklk'}—l_

The proof of (5.7), runs exactly parallel to the proof of (5.1). To
prove (5.8), we observe that by a change of order of summations

= oo oo 1 p
<K>  —-2 <K,
kz:“ + ; kzl k + 1 Pk —1
by virtue of Lemma 8 and the condition that 0 < p,., < p,.
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We thus complete the proof of | F'*|-effective part of Theorem 2.

(IV). Absolute Fourier-effectiveness: of the (N, p,)(C, 1) method
follows from the absolute regularity of the (X, p,) method and the
corresponding effectiveness of the (C, 1) method, which is included in
the result of Theorem B.

Combing (I)-(IV), we complete the proof of Theorem 2.

The author should like to thank a referee for his kind suggestions
which have helped to improve the presentation of this paper.
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